Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100159, 2021.
Article in English | MEDLINE | ID: mdl-33277360

ABSTRACT

Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.


Subject(s)
Cholesterol/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Vesicular Transport Proteins/chemistry , Animals , Binding Sites , Cell Line, Tumor , Cholesterol/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/metabolism , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sphingomyelins/chemistry , Sphingomyelins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
2.
Neurotoxicology ; 47: 37-46, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25572879

ABSTRACT

Stimulated vasopressin (VP) release from magnocellular neuroendocrine cells in the supraoptic nucleus (SON) of hyperosmotic rats is inhibited by treatment with the industrial polychlorinated biphenyl (PCB) mixture, Aroclor 1254. Because VP responses to hyperosmotic stimulation are regulated by nitric oxide (NO) signaling, we studied NO synthase (NOS) activity in the SON of hyperosmotic rats as potential target of PCB-induced disruption of neuroendocrine processes necessary for osmoregulation. To examine PCB-induced changes in NOS activity under normosmotic and hyperosmotic conditions, male Sprague-Dawley rats were exposed to Aroclor 1254 (30mg/kg/day) in utero and NADPH-diaphorase (NADPH-d) activity was assessed in SON sections at three ages: postnatal day 10, early adult (3-5 months) or late adult (14-16 months). Hyperosmotic treatment increased mean NADPH-d staining density of oil hyperosmotic controls by 19.9% in early adults and 58% in late adulthood vs normosmotic controls. In utero exposure to PCBs reduced hyperosmotic-induced upregulation of NADPH-d activity to control levels in early adults and by 28% in late adults. Basal NADPH-d was reduced in postnatal rats. Rats receiving PCB exposure as early adults orally for 14 days displayed normal responses. Our findings show that developmental but not adult exposure to PCBs significantly reduces NOS responses to hyperosmolality in neuroendocrine cells. Moreover, reduced NADPH-d activity produced by in utero exposure persisted in stimulated late adult rats concomitant with reduced osmoregulatory capacity vs oil controls (375±9 vs 349±5mOsm/L). These findings suggest that developmental PCBs permanently compromise NOS signaling in the activated neuroendocrine hypothalamus with potential osmoregulatory consequences.


Subject(s)
/toxicity , NADPH Dehydrogenase/metabolism , Osmoregulation/drug effects , Supraoptic Nucleus/drug effects , Supraoptic Nucleus/enzymology , Animals , Male , Neurons/enzymology , Nitric Oxide Synthase Type I/metabolism , Rats , Rats, Sprague-Dawley
3.
Neuro Endocrinol Lett ; 33(5): 546-51, 2012.
Article in English | MEDLINE | ID: mdl-23090274

ABSTRACT

OBJECTIVES: Although single nucleotide polymorphisms of the human vesicular monoamine transporter 1 (hVMAT1) gene SLC18A1 have been associated with neuropsychiatric disorders, there is limited information on the function of naturally occurring hVMAT1 variant proteins. This study evaluated transport activity of full length hVMAT1 isoform-a (NP_003044.1) with a threonine (Thr) or isoleucine (Ile) at amino acid 136 and hVMAT1 isoform-b (NP_00135796.1) with a 136-Thr and deletion of 32 amino acids in the central region of the protein. Genetic studies have previously linked the 136-Thr to bipolar disorder. METHODS: Expression vectors with hVMAT1 DNA coding for isoform variants were transfected into COS-1 cells. Expression of immunoreactive proteins was assessed by Western blotting, and function was assayed by ATP-dependent transport of radiolabeled serotonin and concentration-dependent inhibition by reserpine. RESULTS: Immunoreactive isoform-a proteins were observed as a major doublet (68-71 Kd) and a minor 39 Kd protein. The major isoform-b protein was 47 Kd with minor 57 and 115 Kd proteins. Isoform-b had no detectable transport activity, despite a large amount of immunoreactive protein. Transport activity of isoform-a with 136-Thr was 20-50% lower than with 136-Ile in time course studies (2.5-5 min) and in additional 5 min assays repeated with 5-6 transfections per variant. Kinetic analyses indicated a lower transport Vmax of isoform-a with 136-Thr but no significant differences in the transport Km or reserpine IC50. CONCLUSIONS: Deletion of amino acids 307-338 in hVMAT1 isoform-b abolishes transport activity, and a 136-Thr partially reduces activity of isoform-a.


Subject(s)
Bipolar Disorder/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Animals , Biological Transport/genetics , Bipolar Disorder/metabolism , COS Cells , Chlorocebus aethiops , Humans , In Vitro Techniques , Isomerism , Protein Structure, Tertiary , Schizophrenia/metabolism , Serotonin/metabolism , Transfection , Vesicular Monoamine Transport Proteins/chemistry
4.
Toxicol Appl Pharmacol ; 256(2): 103-13, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21821059

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) and the structurally similar chemicals polychlorinated biphenyls (PCBs) disrupt the function of multiple endocrine systems. PCBs and PBDEs disrupt the secretion of vasopressin (VP) from the hypothalamus during osmotic activation. Since the peripheral and central vasopressinergic axes are critical for osmotic and cardiovascular regulation, we examined whether perinatal PBDE exposure could impact these functions during physiological activation. Rats were perinatally dosed with a commercial PBDE mixture, DE-71. Dams were given 0 (corn oil control), 1.7 (low dose) or 30.6 mg/kg/day (high dose) in corn oil from gestational day (GD) 6 through postnatal day (PND) 21 by oral gavage. In the male offspring exposed to high dose PBDE plasma thyroxine and triiodothyronine levels were reduced at PND 21 and recovered to control levels by PND 60 when thyroid stimulating hormone levels were elevated. At 14-18 months of age, cardiovascular responses were measured in four groups of rats: Normal (Oil, normosmotic condition), Hyper (Oil, hyperosmotic stress), Hyper PBDE low (1.7 mg/kg/day DE-71 perinatally, hyperosmotic stress), and Hyper PBDE high (30.6 mg/kg/day DE-71 perinatally, hyperosmotic stress). Systolic blood pressure (BP), diastolic BP, and heart rate (HR) were determined using tail cuff sphygmomanometry and normalized to pretreatment values (baseline) measured under basal conditions. Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. Hyper PBDE low and high dose rats showed 36.1 and 64.7% greater systolic BP responses at 3h post hyperosmotic injection relative to pretreatment baseline, respectively. No treatment effects were measured for diastolic BP and HR. Hyper and Hyper PBDE rats showed increased mean plasma osmolality values by 45 min after injection relative to normosmotic controls. In contrast to Hyper rats, Hyper PBDE (high) rats showed a further increase in mean plasma osmolality at 3h (358.3±12.4mOsm/L) relative to 45 min post hyperosmotic injection (325.1±11.4mOsm/L). Impaired osmoregulation in PBDE-treated animals could not be attributed to decreased levels of plasma vasopressin. Our findings suggest that developmental exposure to PBDEs may disrupt cardiovascular reactivity and osmoregulatory responses to physiological activation in late adulthood.


Subject(s)
Halogenated Diphenyl Ethers/adverse effects , Osmotic Pressure/drug effects , Water-Electrolyte Balance/drug effects , Age Factors , Animals , Animals, Newborn , Blood Pressure/drug effects , Dose-Response Relationship, Drug , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Long-Evans , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood , Vasopressins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...