Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Med ; 10(1): 58, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30081931

ABSTRACT

BACKGROUND: The 2014-2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4). METHODS: In order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory. RESULTS: Among others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses. CONCLUSIONS: This study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/physiology , Genome, Human , Virus Replication , Animals , Cell Line, Tumor , Chlorocebus aethiops , Cloning, Molecular , Ebolavirus/drug effects , Ebolavirus/pathogenicity , Gene Knockdown Techniques , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Vero Cells
2.
Antiviral Res ; 157: 140-150, 2018 09.
Article in English | MEDLINE | ID: mdl-30031760

ABSTRACT

Infection with Junín virus (JUNV) is currently being effectively managed in the endemic region using a combination of targeted vaccination and plasma therapy. However, the long-term sustainability of plasma therapy is unclear and similar resources are not available for other New World arenaviruses. As a result, there has been renewed interest regarding the potential of drug-based therapies. To facilitate work on this issue, we present the establishment and subsequent optimization of a JUNV minigenome system to a degree suitable for high-throughput miniaturization, thereby providing a screening platform focused solely on factors affecting RNA synthesis. Using this tool, we conducted a limited drug library screen and identified AVN-944, a non-competitive inosine monophosphate dehydrogenase (IMPDH) inhibitor, as an inhibitor of arenavirus RNA synthesis. We further developed a transcription and replication competent virus-like particle (trVLP) system based on these minigenomes and used it to screen siRNAs against IMPDH, verifying its role in supporting arenavirus RNA synthesis. The antiviral effect of AVN-944, as well as siRNA inhibition, on JUNV RNA synthesis supports that, despite playing only a minor role in the activity of ribavirin, exclusive IMPDH inhibitors may indeed have significant therapeutic potential for use against New World arenaviruses. Finally, we confirmed that AVN-944 is also active against arenavirus infection in cell culture, supporting the suitability of arenavirus lifecycle modelling systems as tools for the screening and identification, as well as the mechanistic characterization, of novel antiviral compounds.


Subject(s)
Antiviral Agents/isolation & purification , Carbamates/isolation & purification , Enzyme Inhibitors/isolation & purification , IMP Dehydrogenase/metabolism , Junin virus/drug effects , Junin virus/growth & development , Phenylurea Compounds/isolation & purification , Animals , Antiviral Agents/pharmacology , Carbamates/pharmacology , Cell Line , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Humans , IMP Dehydrogenase/antagonists & inhibitors , Junin virus/genetics , Phenylurea Compounds/pharmacology , Reverse Genetics/methods , Transcription, Genetic/drug effects , Virus Cultivation , Virus Replication/drug effects
3.
J Vis Exp ; (91): 52381, 2014 Sep 27.
Article in English | MEDLINE | ID: mdl-25285674

ABSTRACT

Ebola viruses cause severe hemorrhagic fevers in humans and non-human primates, with case fatality rates as high as 90%. There are no approved vaccines or specific treatments for the disease caused by these viruses, and work with infectious Ebola viruses is restricted to biosafety level 4 laboratories, significantly limiting the research on these viruses. Lifecycle modeling systems model the virus lifecycle under biosafety level 2 conditions; however, until recently such systems have been limited to either individual aspects of the virus lifecycle, or a single infectious cycle. Tetracistronic minigenomes, which consist of Ebola virus non-coding regions, a reporter gene, and three Ebola virus genes involved in morphogenesis, budding, and entry (VP40, GP1,2, and VP24), can be used to produce replication and transcription-competent virus-like particles (trVLPs) containing these minigenomes. These trVLPs can continuously infect cells expressing the Ebola virus proteins responsible for genome replication and transcription, allowing us to safely model multiple infectious cycles under biosafety level 2 conditions. Importantly, the viral components of this systems are solely derived from Ebola virus and not from other viruses (as is, for example, the case in systems using pseudotyped viruses), and VP40, GP1,2 and VP24 are not overexpressed in this system, making it ideally suited for studying morphogenesis, budding and entry, although other aspects of the virus lifecycle such as genome replication and transcription can also be modeled with this system. Therefore, the tetracistronic trVLP assay represents the most comprehensive lifecycle modeling system available for Ebola viruses, and has tremendous potential for use in investigating the biology of Ebola viruses in future. Here, we provide detailed information on the use of this system, as well as on expected results.


Subject(s)
Ebolavirus/growth & development , Ebolavirus/genetics , Genome, Viral , HEK293 Cells , Humans , Life Cycle Stages , Safety , Virion/genetics , Virion/growth & development , Virology/methods , Virology/standards
4.
J Virol ; 88(18): 10511-24, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24965473

ABSTRACT

UNLABELLED: Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. IMPORTANCE: Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study Ebola viruses and develop countermeasures. Here we report the development of a novel reverse genetics-based system that allows the study of Ebola viruses without maximum-containment laboratories. We used this system to investigate the Ebola virus protein VP24, showing that, contrary to previous reports, it only modestly inhibits virus genome replication and transcription but is important for packaging of genomes into virus particles, which constitutes a previously unknown function of VP24 and a potential antiviral target. We further propose a comprehensive model for the function of VP24 in nucleocapsid assembly. Importantly, on the basis of this approach, it should easily be possible to develop similar experimental systems for other viruses that are currently restricted to maximum-containment laboratories.


Subject(s)
Ebolavirus/growth & development , Ebolavirus/physiology , Genome, Viral , Hemorrhagic Fever, Ebola/virology , Viral Proteins/metabolism , Ebolavirus/genetics , Ebolavirus/pathogenicity , Humans , Viral Proteins/genetics , Virulence , Virus Assembly , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...