Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 5(6): 952-9, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17340011

ABSTRACT

Galactose-based phosphonate analogues of myo-inositol-1-phosphate and phosphatidylinositol have been synthesized from methyl beta-d-galactopyranoside. Michaelis-Arbuzov reaction of isopropyl diphenyl phosphite or triisopropyl phosphite with a 6-iodo-3,4-isopropylidene galactoside afforded the corresponding phosphonates. Deprotection of the diphenyl phosphonate afforded methyl beta-d-galactoside 6-phosphonate, an analogue of myo-inositol-1-phosphate. The diisopropyl esters of the diisopropyl phosphonate were selectively deprotected and the corresponding anion was coupled with 1,2-dipalmitoyl-sn-glycerol using dicyclohexylcarbodiimide. Deprotection afforded a methyl beta-d-galactoside-derived analogue of phosphatidylinositol. The galactose-derived analogues of phosphatidylinositol and myo-inositol-1-phosphate were not substrates for mycobacterial mannosyltransferases (at concentrations up to 1 mM) involved in phosphatidylinositol mannoside biosynthesis in a cell-free extract of Mycobacterium smegmatis. The galactose-derived phosphonate analogue of phosphatidylinositol was shown to be an inhibitor at 0.01 mM of PimA mannosyltransferase involved in the synthesis of phosphatidylinositol mannoside from phosphatidylinositol, and a weaker inhibitor of the next mannosyltransferase(s), which catalyzes the mannosylation of phosphatidylinositol mannoside.


Subject(s)
Galactose/analogs & derivatives , Galactose/pharmacology , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/metabolism , Organophosphonates/pharmacology , Phosphatidylinositols/biosynthesis , Chromatography, Thin Layer , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Mannosyltransferases/antagonists & inhibitors , Mycobacterium smegmatis/enzymology , Organophosphonates/metabolism , Phosphatidylinositols/chemistry , Temperature
2.
Org Biomol Chem ; 3(10): 1982-92, 2005 May 21.
Article in English | MEDLINE | ID: mdl-15889182

ABSTRACT

Mycobacterium tuberculosis is the cause of the deadly human disease tuberculosis. In studies over the last 40 years it has been revealed that this organism possesses a complex cell wall including glycophospholipids such as the phosphatidylinositiol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM). These glycolipids all contain a common alpha-1,6-linked mannoside core, and the higher PIMs and LAM possess alpha-1,2-linked mannosyl residues. It has been shown that simple alpha-1,6-linked oligomannosides can act as substrates for alpha-1,6-mannosyltransferases in mycobacteria. Here we report a simple iterative synthesis of a series of hydrophobic octyl alpha-1,6-linked oligomannosides from mono- through to tetrasaccharides. We have utilized a single thioglycoside donor and alcohol acceptor. Further, we have developed conditions for the conversion of each of these compounds to the 6-deoxy congeners. Deoxygenation of the 6-position of the terminal mannosyl residue should prevent these compounds acting as substrates for the abundant alpha-1,6-mannosyltransferases in mycobacteria and should permit detection of the elusive alpha-1,2-mannosyltransferase activity responsible for elaboration of LM to mature LAM and the biosynthesis of the higher PIMs.


Subject(s)
Oligosaccharides/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Chromatography, Thin Layer , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...