Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(26): 11459-11469, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38875507

ABSTRACT

Anoxic microsites are potentially important but unresolved contributors to soil organic carbon (C) storage. How anoxic microsites vary with soil management and the degree to which anoxic microsites contribute to soil C stabilization remain unknown. Sampling from four long-term agricultural experiments in the central United States, we examined how anoxic microsites varied with management (e.g., cultivation, tillage, and manure amendments) and whether anoxic microsites determine soil C concentration in surface (0-15 cm) soils. We used a novel approach to track anaerobe habitat space and, hence, anoxic microsites using DNA copies of anaerobic functional genes over a confined volume of soil. No-till practices inconsistently increased anoxic microsite extent compared to conventionally tilled soils, and within one site organic matter amendments increased anaerobe abundance in no-till soils. Across all long-term tillage trials, uncultivated soils had ∼2-4 times more copies of anaerobic functional genes than their cropland counterparts. Finally, anaerobe abundance was positively correlated to soil C concentration. Even when accounting for other soil C protection mechanisms, anaerobe abundance, our proxy for anoxic microsites, explained 41% of the variance and 5% of the unique variance in soil C concentration in cropland soils, making anoxic microsites the strongest management-responsive predictor of soil C concentration. Our results suggest that careful management of anoxic microsites may be a promising strategy to increase soil C storage within agricultural soils.


Subject(s)
Carbon , Soil Microbiology , Soil , Soil/chemistry , Agriculture , Anaerobiosis
2.
Poult Sci ; 103(6): 103676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564833

ABSTRACT

Flue Gas Desulfurization (FGD) gypsum is a byproduct of the coal-fired power plant process commonly used to remove sulfur dioxide emissions from the flue gas. FGD gypsum has numerous industrial, agricultural, and environmental applications. This study aimed to explore a novel approach involving the use of FGD gypsum combined with different litter treatments as bedding for broiler production. It focused on performance metrics, including adjusted feed conversion ratio (AFCR) and average body weight (BW), foot pad dermatitis (FPD), and fear response over 5 consecutive flocks. A total of 1,800 one-day-old Ross 708 chicks were randomly assigned to 24 pens (75 birds/pen), divided into 6 treatment groups (4 pens/treatment), with 5 replications and raised until 42 d old (d). Treatments were gypsum that was decaked (D), rotovated (E), and rotovated then windrowed (F) between flocks. Control treatments using pine shavings were decaked (A), rotovated (B), and windrowed postrotovating (C). AFCR, average BW, and mortality were used as a measure of production. Foot pad dermatitis scores were taken on d42 using a scale of 0 (absence), 1 (mild), and 2 (severe). Response to observer and human approach test were used to measure fear response. Data were analyzed as a 2-way ANOVA (Proc Glimmix) for the main effects of bedding type and litter treatment. Means were identified using Tukey's HSD. No effect of bedding type or litter treatment was found for AFCR, BW, or mortality. FPD scores 2 and 1, were higher with pine shavings than gypsum (P = 0.01 and P = 0.01, respectively). While FPD scores 0 were higher for gypsum than the pine shaving (P = 0.01). No difference in fear response was found among birds raised on any of the gypsum litter treatments and any of the pine shaving litter treatments. Overall, the use of gypsum as bedding results in equivalent production and fear response to pine shavings, while increasing FPD quality when compared to pine shaving.


Subject(s)
Calcium Sulfate , Chickens , Fear , Foot Diseases , Housing, Animal , Poultry Diseases , Animals , Chickens/physiology , Calcium Sulfate/chemistry , Calcium Sulfate/administration & dosage , Calcium Sulfate/pharmacology , Foot Diseases/veterinary , Floors and Floorcoverings , Random Allocation , Male , Animal Husbandry/methods , Dermatitis/veterinary
3.
Waste Manag ; 171: 1-9, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37619431

ABSTRACT

Phosphorus (P) runoff from agricultural lands receiving poultry litter (PL) poses a major environmental challenge. Application of flue-gas-desulfurization (FGD)-gypsum produced from coal power plants in agricultural lands has shown promise to reduce P losses. However, no information is available about the effectiveness of FGD-gypsum addition in reducing P solubility when applied as an in-house amendment. Hence, the objectives of this study were to understand a) effectiveness of FGD-gypsum as a litter amendment in reducing P loss risk; and b) how FGD-gypsum amendment in PL alters the distribution of P forms. Broiler chickens were raised for five flocks in seven individual litter treatments replicated four times in a randomized complete block design. Based on the FGD-gypsum addition, the PL treatments were broadly classified as FGD-gypsum treated and untreated. Toxic metal concentrations were analyzed in FGD-gypsum as well as the treatments. Sequential water extractions were performed to understand P solubility. Litter P fractionation was performed to identify bioavailable P (Water-P), labile P (NaHCO3-P), aluminum/iron chemisorbed P (NaOH-P), and mineral occluded P (HCl-P). Results indicated significantly higher soluble P in all untreated than in all FGD-gypsum treated litters in the initial water extraction. The FGD-gypsum treated litters reduced soluble P by 58 to 67% in the 1st water extraction compared to untreated litters. Fractionation study revealed lower proportion of Water-P and higher proportion of NaHCO3-P and HCl-P in all FGD-gypsum treated than in untreated litters. This study suggests reuse of FGD-gypsum in broiler houses can help reduce P mobility without any toxic metals concerns.

4.
J Environ Qual ; 52(4): 897-906, 2023.
Article in English | MEDLINE | ID: mdl-36758189

ABSTRACT

Numerous studies have investigated effects of long-term manure application on total phosphorus (P) and inorganic P (Pi ), but few have evaluated soil organic P (Po ). Little is known about crop management effects on Po in soils with varying minerology. In this study, sequential fractionation was used to characterize specific P forms after 25 years of broiler litter (BL) or ammonium nitrate (Con) applications to an Alabama Hartsells soil. Crops (corn [Zea mays L.], soybean [Glycine Willd.], and corn or soybean with a wheat [Triticum aestivum L.] cover crop) were under conventional tillage (CT) or no-tillage (NT). Regardless of crop, tillage, or fertilizer type, the proportion of extractable Pi was relatively stable at 21%-49% at 0-5 cm and 25%-45% at 5-10 cm. Extractable Pi ranged from 0.69 to 2.4 mg g-1 . BL increased total extractable Pi (p ≤ 0.001) at 0-5 cm and 5-10 cm. Total extractable P was influenced at 0-5 cm (p ≤ 0.006) by both tillage and fertilization type, but not at 5-10 cm or at either depth in soybean plots. Long-term BL application increased total extractable soil P at 0-5 cm. In corn systems, CT did not reduce P loading to topsoil or result in P leaching to lower soil depths, compared to NT. Soybean and soybean-wheat reduced P loading in BL plots, compared to corn and corn-wheat. Soil Po was classed in the order of monoesters > phytate and polyphosphates, where most was extractable with NaOH. BL increased extractable Po in all fractions. Care should be taken when applying BL to highly weathered soils to avoid legacy Po accumulation. Soybean rotations and cover crops could help remediate P-laden soils after repeated BL application.


Subject(s)
Agriculture , Soil , Animals , Alabama , Phosphorus , Manure , Chickens , Crops, Agricultural , Glycine max , Zea mays , Fertilizers , Triticum
5.
PLoS One ; 17(9): e0275198, 2022.
Article in English | MEDLINE | ID: mdl-36166439

ABSTRACT

Soil organic carbon (SOC), a core soil quality indicator, is influenced by management practices. The objective of our 2012-2016 study was to elucidate the impact of gypsum, crop rotation, and cover crop on SOC and several of its biological indicators under no-till in Alabama (Shorter), Indiana (Farmland), and Ohio (Hoytville and Piketon) in the USA. A randomized complete block design in factorial arrangement with gypsum (at 0, 1.1, and 2.2 Mg/ha annually), rye (Secale cereal L.) vs no cover crop, and rotation (continuous soybean [Glycine max (L) Merr., SS] vs corn [Zea mays, L.]-soybean, both the CS and SC phases) was conducted. Composite soils were collected (0-15 cm and 15-30 cm) in 2016 to analyze microbial biomass C (SMBC), SOC, total N, active C, cold and hot-water extractable C, C and N pool indices (CPI and NPI), and C management index (CMI). Results varied for main effects of gypsum, crop rotation, and cover crop on SOC pools, total N, and SOC lability within and across the sites. Gypsum at 2.2 Mg/ha increased SMBC within sites and by 41% averaged across sites. Likewise, gypsum increased SMBC:SOC, active C, and hot-water C (as indicators of labile SOC) averaged across sites. CS rotation increased SOC, active C, CPI, and CMI compared to SS, but decreased SMBC and SMBC:SOC within and across sites. CPI had a significant relationship with NPI across all sites (R2 = 0.90). Management sensitive SOC pools that responded to the combined gypsum (2.2 Mg/ha), crop rotation (CS), and cover crop (rye) were SMBC, SMBC:SOC, active C, and CMI via SMBC. These variables can provide an early indication of management-induced changes in SOC storage and its lability. Our results show that when SOC accumulates, its lability has decreased, presumably because the SMBC has processed all readily available C into a less labile form.


Subject(s)
Carbon , Soil , Agriculture , Calcium Sulfate , Crop Production , Nitrogen/analysis , Secale , Glycine max , Water , Zea mays
7.
J Environ Qual ; 47(5): 1284-1292, 2018 09.
Article in English | MEDLINE | ID: mdl-30272800

ABSTRACT

Gypsum has a long history as a soil amendment. Information on how flue gas desulfurization (FGD) gypsum affects soil, water, and plant properties across a range of climates and soils is lacking. We conducted a meta-analysis using data from 10 field sites in the United States (Alabama, Arkansas, Indiana, New Mexico, North Dakota, Ohio, and Wisconsin). Each site used three rates each of mined and FGD gypsums plus an untreated control treatment. Gypsum rates included a presumed optimal agronomic rate plus one rate lower and one rate higher than the optimal. Gypsum was applied once at the beginning of each study, and then data were collected for 2 to 3 yr. The meta-analyses used response ratios () calculated by dividing the treatment value by the control value for crop yield or for each measured element in plant, soil, and vadose water. These values were tested for their significance with values. Most values varied only slightly from 1.00. Gypsum significantly changed more values from 1.00 for vadose water than for soil or crop tissue in terms of numbers of elements affected (11 for water, 7 for soil, and 8 for crop tissue). The highest value for soil was 1.57 (Ca) which was similar for both mined and FGD gypsum, for crop tissue was 1.46 (Sr) for mined gypsum, and for vadose water was 4.22 (S) for FGD gypsum. The large increase in Ca and S is often a desired response to gypsum application. Lowest values occurred in crop tissue for Mg (0.89) with FGD gypsum and for Ni (0.92 or 0.93) with both gypsums. Although some sites showed crop yield responses to gypsum, the overall mean values for mined gypsum (0.987) and for FGD gypsum (1.00) were not significantly different from 1.00 in this short-term study.


Subject(s)
Agriculture/methods , Calcium Sulfate/chemistry , Conservation of Natural Resources , Fertilizers , Soil Pollutants/chemistry , Plants , Soil/chemistry , United States
8.
J Environ Qual ; 47(4): 865-872, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30025067

ABSTRACT

There are concerns regarding the fate of nutrients from surface application of animal manure. One approach to reduce losses of P is to treat manure with industrial byproducts such as flue gas desulfurization (FGD) gypsum. However, concerns regarding potentially toxic elements contributed to the environment have arisen based on previous element-rich forms of FGD gypsum that included fly ash, whereas "new" FGD gypsum without fly ash is much lower in contaminants. This study examined the impact of FGD gypsum application on soil, plants, and runoff when applied alone or with poultry litter (PL) to soil. The study consisted of a plant response study (four rates of FGD gypsum of 0, 2.2, 4.4, and 8.9 Mg ha and four rates of PL of 0, 4.4, 8.9, and 13.4 Mg ha) and a rainfall simulation study (3.4 Mg PL ha with four rates of FGD gypsum of 0, 2.2, 4.4, and 8.9 Mg ha and controls). Plant, soil, and runoff samples were analyzed for As, Ba, Be, Ca, Cd, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sb, Se, Tl, V, and Zn. Results indicated that FGD gypsum application would not result in increased potentially toxic elements in plants, soil, or runoff. In addition, the application of FGD gypsum significantly reduced P, As, and Fe concentrations in runoff, indicating that FGD gypsum can reduce the negative impact of manure surface application on surface water degradation.


Subject(s)
Calcium Sulfate , Manure , Phosphorus/chemistry , Soil Pollutants/chemistry , Animals , Conservation of Natural Resources , Poultry , Soil
9.
Can J Microbiol ; 62(12): 1041-1056, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27829287

ABSTRACT

Nitrous oxide (N2O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N2O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N2O and carbon dioxide (CO2) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N2O fluxes from pots 41 days after planting showed significant reductions in N2O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N2O emissions occurred with urea. Microbial-based inoculants did not affect total CO2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N2O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N2O reduction.


Subject(s)
Agricultural Inoculants/physiology , Fertilizers , Nitrous Oxide/metabolism , Zea mays/physiology , Agriculture , Carbon Dioxide/metabolism , Nitrates/pharmacology , Nitrogen/metabolism , Plant Shoots/drug effects , Plant Shoots/physiology , Quaternary Ammonium Compounds/pharmacology , Soil/chemistry , Urea/analogs & derivatives , Urea/pharmacology , Zea mays/drug effects
10.
J Environ Qual ; 45(3): 1071-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27136176

ABSTRACT

Controlling the threat that pastures intensively managed with poultry litter (PL) pose to accelerating eutrophication is a major issue in the southeastern United States. Gypsum (CaSO) has been identified as a promising management tool for ameliorating litter P losses to runoff. Thus, research was conducted to elucidate gypsum's residual effects on P losses from a bermudagrass ( L.) pasture. Runoff events (60 min) were created using rainfall simulations. Treatments consisted of applying four flue gas desulfurization (FGD) gypsum rates (0, 2.2, 4.4, and 8.9 Mg ha) to bermudagrass fertilized with 13.4 Mg ha PL plus a nonfertilized check (no litter or gypsum) and 8.9 Mg ha FGD gypsum only as controls. Rainfall simulations (∼ 85 mm h) were conducted immediately, 5 wk, and 6 mo (i.e., at the end of growing season) after PL application to determine gypsum's effectiveness at controlling P loss over successive runoff events. The greatest dissolved P (DP) in runoff occurred immediately after PL application. Gypsum effectively reduced cumulative DP concentration losses (54%) compared with PL alone in initial runoff events. Gypsum reduced DP concentrations in succeeding runoff events also regardless of timing, suggesting that its effect is persistent and will not diminish over a growing season. Generally, maximum DP reductions were achieved with 8.9 Mg ha. However, it was surmised from this study that optimal P reduction in a bermudagrass pasture can be achieved with 4.4 Mg ha. Information ascertained from this study may be useful in aiding land managers making prescriptions for management practices that reduce DP losses from agricultural fields.


Subject(s)
Calcium Sulfate/chemistry , Phosphorus/analysis , Water Purification , Animals , Cynodon , Manure , Water Movements
11.
J Environ Qual ; 44(6): 1699-710, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26641321

ABSTRACT

Enhanced-efficiency N fertilizers (EENFs) have the potential to increase crop yield while decreasing soil N loss. However, the effect of EENFs on greenhouse gas (GHG) emissions from different agricultural systems is not well understood. Thus, studies from a variety of locations and cropping systems are needed to evaluate their impact. An experiment was initiated on a Coastal Plain soil under cotton ( L.) production for comparing EENFs to traditional sources. Nitrogen sources included urea, ammonia sulfate (AS), urea-ammonia sulfate (UAS), controlled-release, polymer-coated urea (Environmental Smart Nitrogen [ESN]), stabilized granular urea (SuperU), poultry litter (PL), poultry litter plus AgrotainPlus (PLA), and an unfertilized control. Carbon dioxide (CO), nitrous oxide (NO), and methane (CH) fluxes were monitored regularly after fertilization through harvest from 2009 to 2011 using a closed-chamber method. Poultry litter and PLA had higher CO flux than other N treatments, while ESN and SU were generally lowest following fertilization. Nitrous oxide fluxes were highly variable and rarely affected by N treatments; PL and PLA were higher but only during the few samplings in 2010 and 2011. Methane fluxes were higher in 2009 (wet year) than 2010 or 2011, and N treatments had minimal impact. Global warming potential (GWP), calculated from cumulative GHG fluxes, was highest with PL and PLA and lowest for control, UAS, ESN, and SU. Results suggest that PL application to cotton increases GHG flux, but GHG flux reductions from EENFs were infrequently different from standard inorganic fertilizers, suggesting their higher cost may render them presently impractical.

12.
J Environ Qual ; 44(6): 1930-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26641345

ABSTRACT

Excessive phosphorus (P) loss from agricultural fields is a major cause of eutrophication to rivers, lakes, and streams. To mitigate P loss after poultry litter (PL) applications, technology is being developed to apply litter below the soil surface. Thus, research was conducted to evaluate the effects of subsurface PL banding on soil P under pasture management. Treatments consisted of surface-broadcasted or subsurface-banded PL (38 cm apart) at 9 Mg ha, surface-broadcasted commercial fertilizer (CF; urea and triple superphosphate blend) at N (330 kg N ha) and P (315 kg N ha) application rates equivalent to PL, and a nonfertilized control. Runoff events lasting 40 min were simulated in bermudagrass ( L.) pastures on common soil types of the Coastal Plain and Piedmont regions. One day later, Mehlich-1 and water-soluble P concentrations in soil were measured at depths of 0 to 5 cm and 5 to 10 cm to determine P distribution and movement. The greatest P concentrations were observed at the shallow depth for all treatments. Phosphorus measurements at the point of application for PL bands were greater than for the surface-applied treatments (PL and CF) and control. Measurements between subsurface PL bands were slightly higher than the control but were statistically similar, suggesting that this application method can abate short-term P movement. Results obtained from this study show that subsurface band applying PL could increase P retention and reduce movement by precluding contact between surface water and litter nutrients.

13.
J Environ Qual ; 43(1): 246-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602557

ABSTRACT

Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems.

14.
J Environ Qual ; 43(1): 273-80, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602560

ABSTRACT

There are growing concerns regarding the fate of nutrients, especially phosphorus (P), from land application of animal waste. One approach being studied to reduce runoff losses of P is to treat manure or the soil receiving manure with chemical amendments such as gypsum. This study used rainfall simulations to examine the impact of flue gas desulfurization (FGD) gypsum application on runoff nutrient losses on a Coastal Plains soil (Luverne sandy loam; fine, mixed, semiactive, thermic Typic Hapludults). Four rates of FGD gypsum (0, 2.2, 4.4, and 8.9 Mg ha) were applied to plots of Coastal Bermudagrass ( L.) that had received application of 13.4 Mg ha poultry litter. Plots with 8.9 Mg ha FGD gypsum but no poultry litter and plots with neither poultry litter nor FGD gypsum were also used. Rainfall simulation was used to generate water runoff for 60 min, and samples were analyzed for soluble reactive P (SRP) and soluble Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, and Zn. Total concentration of Ca, Mg, K, Na, Fe, Mn, and Zn and concentration of heavy metals Ar, Hg, Al, Sb, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Si, V, Se, Tl, and hexavalent chromium were also analyzed. Results indicated a maximum of 61% reduction in SRP concentration in runoff with the application of 8.9 Mg ha FGD gypsum. This translated to a 51% reduction in total SRP load during the 60-min runoff event. Concentrations of heavy metals in runoff were all found to be below detection limits. The results indicated that use of 4.4 Mg ha FGD gypsum on Coastal Plains pastures receiving poultry litter could be an effective method of reducing SRP losses to the environment.

15.
J Environ Qual ; 42(3): 704-12, 2013.
Article in English | MEDLINE | ID: mdl-23673937

ABSTRACT

There is currently much interest in developing crop management practices that will decrease NO emissions from agricultural soils. Many different approaches are being investigated, but to date, no studies have been published on how microbial inoculants affect NO emissions. This study was conducted to test the hypothesis that microbial-based inoculants known to promote root growth and nutrient uptake can reduce NO emissions in the presence of N fertilizers under controlled conditions. Carbon dioxide and CH fluxes were also measured to evaluate microbial respiration and determine the aerobic and anaerobic conditions of the incubated soil. The microbial-based treatments investigated were SoilBuilder (SB), a metabolite extract of SoilBuilder (SBF), and a mixture of four strains of plant growth-promoting spp. Experiments included two different N fertilizer treatments, urea and urea-NHNO 32% N (UAN), and an unfertilized control. Emissions of NO and CO were determined from soil incubations and analyzed with gas chromatography. After 29 d of incubation, cumulative NO emissions were reduced 80% by SB and 44% by SBF in soils fertilized with UAN. Treatment with spp. significantly reduced NO production on Days 1 and 2 of the incubation in soils fertilized with UAN. In the unfertilized treatment, cumulative emissions of NO were significantly reduced 92% by SBF. Microbial-based treatments did not reduce NO emissions associated with urea application. Microbial-based treatments increased CO emissions from soils fertilized with UAN, suggesting a possible increase in microbial activity. Overall, the results demonstrated that microbial-based inoculants can reduce NO emissions associated with N fertilizer application, and this response varies with the type of microbial-based inoculant and fertilizer.


Subject(s)
Fertilizers , Nitrous Oxide , Agricultural Inoculants , Carbon Dioxide , Methane , Nitrogen/chemistry , Nitrous Oxide/chemistry , Soil/chemistry , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...