Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Qual Health Care ; 36(2)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687831

ABSTRACT

A proportion of returned medications may potentially meet quality standards to be reused safely. In Australia, there is no regulatory guidance available to facilitate such medication reuse. This narrative review aimed to identify and review international literature describing medication reuse programs to provide insight into their implementation and potential barriers. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) -based guidelines, a literature search was conducted in Medline, Scopus, and Embase using key words such as 'medication' and 'reuse' to identify relevant articles. Two reviewers ascertained eligibility for inclusion. Inclusion criteria included English language and publication after 2010. From the articles selected, identified international medication reuse programs and relevant regulatory aspects were summarized. Details, both regulatory and operational, for the specific medication reuse programs, described in the selected articles was further explored via a grey literature search. Of the 1973 identified articles, 84 were assessed for eligibility and 17 were included in this review. Of these, 14 described scenarios where medication reuse is prohibited, 2 studies described programs allowing the reuse of medication and 1 study did not discuss whether reuse was prohibited or not. From these primary articles, secondary citations were identified, with eight from gray literature. Barriers to medication reuse included exposure to environmental extremes during storage, physical appearance, evidence of tampering, safety, and efficacy concerns for the returned medication. Programs that exist globally have overcome these barriers. Several programs that provide safe and effective reuse of medications were i© The Author(s) 2024. Published by Oxford University Press on behalf of International Society for Quality in Health Care. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.dentified and described. The findings described in this review should be used to inform frameworks for legislative, regulatory, and professional practice change for medication reuse. Measures implemented in the UK's pandemic response to safely reuse medications in the nursing home and hospice settings and European medication donation programs should be further investigated. The concept of medication reuse is not novel and should be considered for the Australian setting.


Subject(s)
Humans , Australia , Pharmaceutical Preparations
2.
Adv Healthc Mater ; 13(4): e2302596, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37935580

ABSTRACT

There is an urgent need for alternative antimicrobial materials due to the growing challenge of bacteria becoming resistant to conventional antibiotics. This study demonstrates the creation of a biocompatible pH-switchable antimicrobial material by combining bacteria-derived rhamnolipids (RL) and food-grade glycerol monooleate (GMO). The integration of RL into dispersed GMO particles, with an inverse-type liquid crystalline cubic structure in the core, leads to colloidally stable supramolecular materials. The composition and pH-triggered structural transformations are studied with small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. The composition-structure-activity relationship is analyzed and optimized to target bacteria at acidic pH values of acute wounds. The new RL/GMO dispersions reduce Staphylococcus aureus (S. aureus) populations by 7-log after 24 h of treatment with 64 µg mL-1 of RL and prevent biofilm formation at pH = 5.0, but have no activity at pH = 7.0. Additionally, the system is active against methicillin-resistant S. aureus (MRSA) with minimum inhibitory concentration of 128 µg mL-1 at pH 5.0. No activity is found against several Gram-negative bacteria at pH 5.0 and 7.0. The results provide a fundamental understanding of lipid self-assembly and the design of lipid-based biomaterials, which can further guide the development of alternative bio-based solutions to combat bacteria.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Glycolipids/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Hydrogen-Ion Concentration , Microbial Sensitivity Tests
3.
J Colloid Interface Sci ; 657: 971-981, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38096780

ABSTRACT

HYPOTHESIS: Enveloped viruses are pivotal in causing various illnesses, including influenza and COVID-19. The antimicrobial peptide LL-37, a critical part of the human innate immune system, exhibits potential as an antiviral agent capable of thwarting these viral threats. Its mode of action involves versatile and non-specific interactions that culminate in dismantling the viral envelope, ultimately rendering the viruses inert. However, the exact mechanism of action is not yet understood. EXPERIMENTS: Here, the mechanism of LL-37 triggered changes in the structure and function of an enveloped virus is investigated. The bacteriophage "Phi6" is used as a surrogate for pathogenic enveloped viruses. Small angle X-ray and neutron scattering combined with light scattering techniques demonstrate that LL-37 actively integrates into the virus's lipid envelope. FINDINGS: LL-37 addition to Phi6 leads to curvature modification in the lipid bilayer, ultimately separating the envelope from the nucleocapsid. Additional biological assays confirm the loss of virus infectivity in the presence of LL-37, which coincides with the structural transformations. The results provide a fundamental understanding of the structure-activity relationship related to enveloped viruses. The knowledge of peptide-virus interactions can guide the design of future peptide-based antiviral drugs and therapies.


Subject(s)
Antimicrobial Peptides , Viruses , Humans , Antiviral Agents/pharmacology , Peptides/pharmacology , Lipid Bilayers/chemistry
4.
Methods Mol Biol ; 2671: 219-239, 2023.
Article in English | MEDLINE | ID: mdl-37308648

ABSTRACT

The formulation of Pickering emulsions using protein cages is gaining interest for applications in molecular delivery. Despite the growing interest, methods to investigate the at the liquid-liquid interface are limited. This chapter describes standard methods to formulate and protocols to characterize protein cage-stabilized emulsions. The characterization methods are dynamic light scattering (DLS), intrinsic fluorescence spectroscopy (TF), circular dichroism (CD), and small angle X-ray scattering (SAXS). Combining these methods allows understanding of the protein cage nanostructure at the oil/water interface.


Subject(s)
Emulsions , Scattering, Small Angle , X-Ray Diffraction , Circular Dichroism , Dynamic Light Scattering
5.
Sci Rep ; 13(1): 834, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646795

ABSTRACT

Process analytical technology (PAT) has demonstrated huge potential to enable the development of improved biopharmaceutical manufacturing processes by ensuring the reliable provision of quality products. However, the complexities associated with the manufacture of advanced therapy medicinal products have resulted in a slow adoption of PAT tools into industrial bioprocessing operations, particularly in the manufacture of cell and gene therapy products. Here we describe the applicability of a novel refractometry-based PAT system (Ranger system), which was used to monitor the metabolic activity of HEK293T cell cultures during lentiviral vector (LVV) production processes in real time. The PAT system was able to rapidly identify a relationship between bioreactor pH and culture metabolic activity and this was used to devise a pH operating strategy that resulted in a 1.8-fold increase in metabolic activity compared to an unoptimised bioprocess in a minimal number of bioreactor experiments; this was achieved using both pre-programmed and autonomous pH control strategies. The increased metabolic activity of the cultures, achieved via the implementation of the PAT technology, was not associated with increased LVV production. We employed a metabolic modelling strategy to elucidate the relationship between these bioprocess level events and HEK293T cell metabolism. The modelling showed that culturing of HEK293T cells in a low pH (pH 6.40) environment directly impacted the intracellular maintenance of pH and the intracellular availability of oxygen. We provide evidence that the elevated metabolic activity was a response to cope with the stress associated with low pH to maintain the favourable intracellular conditions, rather than being indicative of a superior active state of the HEK293T cell culture resulting in enhanced LVV production. Forecasting strategies were used to construct data models which identified that the novel PAT system not only had a direct relationship with process pH but also with oxygen availability; the interaction and interdependencies between these two parameters had a direct effect on the responses observed at the bioprocess level. We present data which indicate that process control and intervention using this novel refractometry-based PAT system has the potential to facilitate the fine tuning and rapid optimisation of the production environment and enable adaptive process control for enhanced process performance and robustness.


Subject(s)
Bioreactors , Proteins , Humans , HEK293 Cells , Cell Culture Techniques , Machine Learning
6.
Chimia (Aarau) ; 76(10): 846-851, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-38069697

ABSTRACT

Viruses are nature's own nanoparticles that are highly symmetric and monodisperse in size and shape with well-defined surface chemistry. They have evolved for optimal cell interactions, genetic information delivery and replication by the host cell over millions of years. These features render them into very efficient pathogens that place a severe burden onto the health of our society. At the same time, they are highly interesting objects for colloidal studies and building blocks for advanced bio-inspired materials for health applications. Their characterisation requires sophisticated experimental techniques such as scattering of X-rays, neutrons, and light to probe structures and interactions from the nanometre to the micrometre length-scale in solution. This contribution summarizes the recent progress in the field of virus self-assembly and virus-based biopolymer composites for advanced material design. It discusses the advances and highlights some of the challenges in the characterization of structure and dynamics in these materials with a focus on scattering techniques. It further demonstrates selected applications in the field of food and water purification.

7.
J Phys Chem Lett ; 12(39): 9557-9563, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34581569

ABSTRACT

Lipid-enveloped viruses, such as Ebola, influenza, or coronaviruses, are a major threat to human health. Ethanol is an efficient disinfectant that is widely used to inactivate these viruses and prevent their transmission. However, the interactions between ethanol and enveloped viruses leading to their inactivation are not yet fully understood. This study demonstrates the link between ethanol-induced viral inactivation and the nanostructural and chemical transformations of the model virus Phi6, an 85 nm diameter lipid-enveloped bacterial virus that is commonly used as surrogate for human pathogenic viruses. The virus morphology was investigated using small-angle X-ray scattering and dynamic light scattering and was related to its infectivity. The Phi6's surface chemistry was characterized by cryogenic X-ray photoelectron spectroscopy, and the modifications in protein structure were assessed by circular dichroism and fluorescence spectroscopy. Ethanol-triggered structural modifications were found in the lipid envelope, detaching from the protein capsid and forming coexisting nanostructures.


Subject(s)
Bacteriophage phi 6/chemistry , Ethanol/pharmacology , Virus Inactivation/drug effects , Bacteriophage phi 6/drug effects , Bacteriophage phi 6/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Circular Dichroism , Dynamic Light Scattering , Ethanol/chemistry , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Scattering, Small Angle , X-Ray Diffraction
8.
Small ; 17(30): e2100307, 2021 07.
Article in English | MEDLINE | ID: mdl-34146389

ABSTRACT

Norovirus and Rotavirus are among the pathogens causing a large number of disease outbreaks due to contaminated water. These viruses are nanoscale particles that are difficult to remove by common filtration approaches which are based on physical size exclusion, and require adsorption-based filtration methods. This study reports the pH-responsive interactions of viruses with cationic-modified nanocellulose and demonstrates a filter material that adsorbs nanoscale viruses and can be regenerated by changing the solution's pH. The bacteria viruses Qbeta and MS2, with diameters below 30 nm but different surface properties, are used to evaluate the pH-dependency of the interactions and the filtration process. Small angle X-ray scattering, cryogenic transmission electron microscopy, and ζ-potential measurements are used to study the interactions and analyze changes in their nanostructure and surface properties of the virus upon adsorption. The virus removal capacity of the cationic cellulose-based aerogel filter is 99.9% for MS2 and 93.6% for Qbeta, at pH = 7.0; and desorption of mostly intact viruses occurs at pH = 3.0. The results contribute to the fundamental understanding of pH-triggered virus-nanocellulose self-assembly and can guide the design of sustainable and environmentally friendly adsorption-based virus filter materials as well as phage and virus-based materials.


Subject(s)
Cellulose , Viruses , Filtration , Hydrogen-Ion Concentration , Water
9.
Front Chem ; 9: 666853, 2021.
Article in English | MEDLINE | ID: mdl-34124001

ABSTRACT

Interaction between microorganisms and their surroundings are generally mediated via the cell wall or cell envelope. An understanding of the overall chemical composition of these surface layers may give clues on how these interactions occur and suggest mechanisms to manipulate them. This knowledge is key, for instance, in research aiming to reduce colonization of medical devices and device-related infections from different types of microorganisms. In this context, X-ray photoelectron spectroscopy (XPS) is a powerful technique as its analysis depth below 10 nm enables studies of the outermost surface structures of microorganism. Of specific interest for the study of biological systems is cryogenic XPS (cryo-XPS). This technique allows studies of intact fast-frozen hydrated samples without the need for pre-treatment procedures that may cause the cell structure to collapse or change due to the loss of water. Previously, cryo-XPS has been applied to study bacterial and algal surfaces with respect to their composition of lipids, polysaccharides and peptide (protein and/or peptidoglycan). This contribution focuses onto two other groups of microorganisms with widely different architecture and modes of life, namely fungi and viruses. It evaluates to what extent existing models for data treatment of XPS spectra can be applied to understand the chemical composition of their very different surface layers. XPS data from model organisms as well as reference substances representing specific building blocks of their surface were collected and are presented. These results aims to guide future analysis of the surface chemical composition of biological systems.

10.
ACS Nano ; 14(2): 1879-1887, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32027487

ABSTRACT

Enteric viruses, such as enterovirus, norovirus, and rotavirus, are among the leading causes of disease outbreaks due to contaminated drinking and recreational water. Viruses are difficult to remove from water through filtration based on physical size exclusion-for example by gravity-driven filters-due to their nanoscale size. To understand virus removal in drinking water treatment systems, the colloidal nanostructure of a model virus, the MS2 bacteriophage, has been investigated in relation to the effect of pH and natural organic matter in water. Dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy demonstrated that the water pH has a major influence on the colloidal structure of the virus: The bacteriophage MS2's structure in water in the range pH = 7.0 to 9.0 was found to be spherical with core-shell-type structure with a total diameter of 27 nm and a core radius of around 8 nm. Reversible transformations from 27 nm particles at pH = 7.0 to micrometer-sized aggregates at pH = 3.0 were observed. In addition, the presence of natural organic matter that simulates the organic components present in surface water was found to enhance repulsion between virus particles, reduce the size of aggregates, and promote disaggregation upon pH increase. These findings allow a better understanding of virus interactions in water and have implications for water treatment using filtration processes and coagulation. The results will further guide the comprehensive design of advanced virus filter materials.


Subject(s)
Levivirus/metabolism , Organic Chemicals/metabolism , Virion/metabolism , Colloids/chemistry , Colloids/metabolism , Hydrodynamics , Hydrogen-Ion Concentration , Levivirus/chemistry , Microscopy, Electron, Transmission , Organic Chemicals/chemistry , Particle Size , Surface Properties , Virion/chemistry , Water/chemistry , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...