Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 154(5): 2928-2936, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37938048

ABSTRACT

An unmanned surface vehicle (USV; Wave Glider) was deployed to study the coastal soundscape in shallow (less than 30 m) coastal waters off the coast of Cape Canaveral, FL, in July 2020 and January 2022. These surveys documented temporal and seasonal trends in biological sounds across a variety of habitats within an 812-km2 survey area, including sand shoals, sand-mud plains, and natural hardbottom. Among a broader diversity of identifiable and unidentifiable fish choruses recorded during the survey, a distinct and previously unidentified fish chorus was recorded; corroborating evidence suggests it and other sounds with similar spectral properties may be produced by Atlantic midshipman. Putative Atlantic midshipman sounds included an agnostic grunt and a seasonal chorus of persistent hums that peaked 3 h after sunset in the summer survey. While Atlantic midshipman have been demonstrated to have well-developed sonic muscles on their swim bladder, their acoustic behavior has not been previously described. Our use of a mobile passive acoustic platform combined with bottom sampling of fish communities highlights an important opportunity to identify previously undocumented biological sound sources in coastal habitats.


Subject(s)
Batrachoidiformes , Animals , Sand , Acoustics , Air Sacs , Aircraft
2.
PLoS One ; 18(8): e0290819, 2023.
Article in English | MEDLINE | ID: mdl-37651444

ABSTRACT

Anthropogenic activities can lead to changes in animal behavior. Predicting population consequences of these behavioral changes requires integrating short-term individual responses into models that forecast population dynamics across multiple generations. This is especially challenging for long-lived animals, because of the different time scales involved. Beaked whales are a group of deep-diving odontocete whales that respond behaviorally when exposed to military mid-frequency active sonar (MFAS), but the effect of these nonlethal responses on beaked whale populations is unknown. Population consequences of aggregate exposure to MFAS was assessed for two beaked whale populations that are regularly present on U.S. Navy training ranges where MFAS is frequently used. Our approach integrates a wide range of data sources, including telemetry data, information on spatial variation in habitat quality, passive acoustic data on the temporal pattern of sonar use and its relationship to beaked whale foraging activity, into an individual-based model with a dynamic bioenergetic module that governs individual life history. The predicted effect of disturbance from MFAS on population abundance ranged between population extinction to a slight increase in population abundance. These effects were driven by the interaction between the temporal pattern of MFAS use, baseline movement patterns, the spatial distribution of prey, the nature of beaked whale behavioral response to MFAS and the top-down impact of whale foraging on prey abundance. Based on these findings, we provide recommendations for monitoring of marine mammal populations and highlight key uncertainties to help guide future directions for assessing population impacts of nonlethal disturbance for these and other long-lived animals.


Subject(s)
Caniformia , Whales , Animals , Sound , Acoustics , Anthropogenic Effects , Behavior, Animal
3.
PLoS One ; 18(6): e0286664, 2023.
Article in English | MEDLINE | ID: mdl-37327239

ABSTRACT

Offshore sand shoals are a coveted sand source for coastal restoration projects and as sites for wind energy development. Shoals often support unique fish assemblages but their habitat value to sharks is largely unknown due to the high mobility of most species in the open ocean. This study pairs multi-year longline and acoustic telemetry surveys to reveal depth-related and seasonal patterns in a shark community associated with the largest sand shoal complex in east Florida, USA. Monthly longline sampling from 2012-2017 yielded 2,595 sharks from 16 species with Atlantic sharpnose (Rhizoprionodon terraenovae), blacknose (Carcharhinus acronotus), and blacktip (C. limbatus) sharks being the most abundant species. A contemporaneous acoustic telemetry array detected 567 sharks from 16 species (14 in common with longlines) tagged locally and by researchers elsewhere along the US East Coast and Bahamas. PERMANOVA modeling of both datasets indicate that the shark species assemblage differed more across seasons than water depth although both factors were important. Moreover, the shark assemblage detected at an active sand dredge site was similar to that at nearby undisturbed sites. Water temperature, water clarity, and distance from shore were habitat factors that most strongly correlated to community composition. Both sampling approaches documented similar single-species and community trends but longlines underestimated the shark nursery value of the region while telemetry-based community assessments are inherently biased by the number of species under active study. Overall, this study confirms that sharks can be an important component of sand shoal fish communities but suggests that deeper water immediately adjacent to shoals (as opposed to shallow shoal ridges) is more valuable to some species. Potential impacts to these nearby habitats should be considered when planning for sand extraction and offshore wind infrastructure.


Subject(s)
Sand , Sharks , Animals , Ecosystem , Telemetry , Acoustics
4.
Ecol Appl ; 32(1): e02475, 2022 01.
Article in English | MEDLINE | ID: mdl-34653299

ABSTRACT

Assessing the patterns of wildlife attendance to specific areas is relevant across many fundamental and applied ecological studies, particularly when animals are at risk of being exposed to stressors within or outside the boundaries of those areas. Marine mammals are increasingly being exposed to human activities that may cause behavioral and physiological changes, including military exercises using active sonars. Assessment of the population-level consequences of anthropogenic disturbance requires robust and efficient tools to quantify the levels of aggregate exposure for individuals in a population over biologically relevant time frames. We propose a discrete-space, continuous-time approach to estimate individual transition rates across the boundaries of an area of interest, informed by telemetry data collected with uncertainty. The approach allows inferring the effect of stressors on transition rates, the progressive return to baseline movement patterns, and any difference among individuals. We apply the modeling framework to telemetry data from Blainville's beaked whale (Mesoplodon densirostris) tagged in the Bahamas at the Atlantic Undersea Test and Evaluation Center (AUTEC), an area used by the U.S. Navy for fleet readiness training. We show that transition rates changed as a result of exposure to sonar exercises in the area, reflecting an avoidance response. Our approach supports the assessment of the aggregate exposure of individuals to sonar and the resulting population-level consequences. The approach has potential applications across many applied and fundamental problems where telemetry data are used to characterize animal occurrence within specific areas.


Subject(s)
Sound , Whales , Animals , Whales/physiology
5.
Mar Pollut Bull ; 145: 239-247, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31590782

ABSTRACT

Small cetaceans continue to be exposed to elevated levels of persistent organic pollutants (POPs). The goals of this study were to use data from remote biopsy sampling and photographic-identification to compare POP concentrations between small cetacean stocks in the northern Gulf of Mexico. During 2015-2017, 74 remote biopsies were collected in St. Andrew Bay and adjacent coastal waters from two species: common bottlenose dolphin (Tursiops truncatus) (N = 28, ♀; N = 42, ♂) and Atlantic spotted dolphin (Stenella frontalis) (N = 2, ♀; N = 2, ♂). Common bottlenose dolphin POP concentrations were significantly higher in St. Andrew Bay than coastal waters. Male St. Andrew Bay dolphins had the highest Σ DDT (dichlorodiphenyl-dichloroethane) levels measured in the southeastern U.S. (67 µg/g, 50-89 µg/g; geometric mean and 95% CI) and showed a significant negative relationship between Σ DDT and sighting distance from a St. Andrew Bay point source.


Subject(s)
Bottle-Nosed Dolphin , Stenella , Water Pollutants, Chemical/analysis , Adipose Tissue/chemistry , Animals , DDT/analysis , Environmental Monitoring , Estuaries , Female , Gulf of Mexico , Male , Photography , Southeastern United States
6.
R Soc Open Sci ; 4(8): 170629, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28879004

ABSTRACT

Cuvier's beaked whales (Ziphius cavirostris) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away.

7.
PLoS One ; 11(11): e0163638, 2016.
Article in English | MEDLINE | ID: mdl-27880786

ABSTRACT

The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152-157 dB re 1 µPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.


Subject(s)
Behavior, Animal/physiology , Perciformes/physiology , Acoustic Stimulation , Animals , Movement , Telemetry , Time Factors
8.
Adv Exp Med Biol ; 875: 479-87, 2016.
Article in English | MEDLINE | ID: mdl-26610995

ABSTRACT

The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of construction occurring in coastal habitats throughout the world. In this study, we used acoustic telemetry to assess the movement and survival of free-ranging reef fish in Port Canaveral, FL, in response to 35 days of pile driving at an existing wharf complex. The site fidelity and behavior of 15 sheepshead (Archosargus probatocephalus) and 10 gray snapper (Lutjanus griseus) were determined before, during, and after pile driving. No obvious signs of mortality or injury to tagged fish were evident from the data. There was a significant decline in the residency index for mangrove snapper at the construction wharf after pile driving compared with the baseline, although this may be influenced by natural movements of this species in the study area rather than a direct response to pile driving.


Subject(s)
Coral Reefs , Fishes/physiology , Noise , Acoustics , Animals , Florida , Geography , Tape Recording
9.
Adv Exp Med Biol ; 875: 1213-21, 2016.
Article in English | MEDLINE | ID: mdl-26611089

ABSTRACT

There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.


Subject(s)
Behavior, Animal/physiology , Coral Reefs , Fishes/physiology , Sound , Turtles/physiology , Animals , Florida , Sound Spectrography
10.
J Anim Ecol ; 75(3): 814-25, 2006 May.
Article in English | MEDLINE | ID: mdl-16689963

ABSTRACT

1. Digital tags were used to describe diving and vocal behaviour of sperm whales during 198 complete and partial foraging dives made by 37 individual sperm whales in the Atlantic Ocean, the Gulf of Mexico and the Ligurian Sea. 2. The maximum depth of dive averaged by individual differed across the three regions and was 985 m (SD = 124.3), 644 m (123.4) and 827 m (60.3), respectively. An average dive cycle consisted of a 45 min (6.3) dive with a 9 min (3.0) surface interval, with no significant differences among regions. On average, whales spent greater than 72% of their time in foraging dive cycles. 3. Whales produced regular clicks for 81% (4.1) of a dive and 64% (14.6) of the descent phase. The occurrence of buzz vocalizations (also called 'creaks') as an indicator of the foraging phase of a dive showed no difference in mean prey capture attempts per dive between regions [18 buzzes/dive (7.6)]. Sperm whales descended a mean of 392 m (144) from the start of regular clicking to the first buzz, which supports the hypothesis that regular clicks function as a long-range biosonar. 4. There were no significant differences in the duration of the foraging phase [28 min (6.0)] or percentage of the dive duration in the foraging phase [62% (7.3)] between the three regions, with an overall average proportion of time spent actively encountering prey during dive cycles of 0.53 (0.05). Whales maintained their time in the foraging phase by decreasing transit time for deeper foraging dives. 5. Similarity in foraging behaviour in the three regions and high diving efficiencies suggest that the success of sperm whales as mesopelagic predators is due in part to long-range echolocation of deep prey patches, efficient locomotion and a large aerobic capacity during diving.


Subject(s)
Animal Communication , Diving , Echolocation/physiology , Predatory Behavior/physiology , Whales/physiology , Acoustics , Animals , Behavior, Animal , Female , Male , Sound Spectrography , Time Factors , Vocalization, Animal/physiology
11.
Nature ; 434(7032): 455-6, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15791244

ABSTRACT

There are a few mammalian species that can modify their vocalizations in response to auditory experience--for example, some marine mammals use vocal imitation for reproductive advertisement, as birds sometimes do. Here we describe two examples of vocal imitation by African savannah elephants, Loxodonta africana, a terrestrial mammal that lives in a complex fission-fusion society. Our findings favour a role for vocal imitation that has already been proposed for primates, birds, bats and marine mammals: it is a useful form of acoustic communication that helps to maintain individual-specific bonds within changing social groupings.


Subject(s)
Elephants/physiology , Learning/physiology , Sound , Vocalization, Animal/physiology , Acoustic Stimulation , Africa , Aging/physiology , Animals , Automobiles , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...