Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Crit Rev Oncog ; 27(1): 25-43, 2022.
Article in English | MEDLINE | ID: mdl-35993977

ABSTRACT

Inflammation is a key risk factor and functional driver in the initiation and progression of prostate cancer (PCa). De-regulated cytokine and chemokine signaling facilitates critical communication between tumor cells and multiple cell lineages within the tumor microenvironment (TME). Historical attempts at using targeted approaches to disrupt inflammation have been disappointing, with sub-optimal or negligible clinical benefit. Our increased awareness of the myeloid infiltrate in supporting the acquisition of castrate resistance and underpinning the abject response of advanced PCa to immunotherapy has re-focused attention on improved strategies to disrupt these complex cytokine and chemokine signaling networks within the TME. These ongoing and prospective strategies are principally focused on employing cytokine-/chemokine-directed therapies in informed combination with androgen signaling inhibitors or immunotherapeutic agents and, increasingly, with due consideration of the genetic context of the tumor. The availability of molecular-targeted therapeutic agents directed against the critical signal transduction nodes activated by cytokine and chemokine signaling in tumor cells provides opportunities to reduce the impacts of biological redundancy. Precision-based trials that deploy this latest generation of cytokine- and chemokine-directed therapeutics, directed to enriched patient cohorts in a biologically informed and biomarker-guided manner, have the potential to diversify the armamentarium of agents that is required in order to transform long-term outcomes for a currently incurable and genetically heterogenous disease.


Subject(s)
Cytokines , Prostatic Neoplasms , Chemokines/therapeutic use , Humans , Inflammation , Male , Prospective Studies , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Tumor Microenvironment
2.
Mol Cancer Res ; 20(6): 841-853, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35302608

ABSTRACT

Inhibiting androgen signaling using androgen signaling inhibitors (ASI) remains the primary treatment for castrate-resistant prostate cancer. Acquired resistance to androgen receptor (AR)-targeted therapy represents a major impediment to durable clinical response. Understanding resistance mechanisms, including the role of AR expressed in other cell types within the tumor microenvironment, will extend the clinical benefit of AR-targeted therapy. Here, we show the ASI enzalutamide induces vascular catastrophe and promotes hypoxia and microenvironment adaptation. We characterize treatment-induced hypoxia, and subsequent induction of angiogenesis, as novel mechanisms of relapse to enzalutamide, highlighting the importance of two hypoxia-regulated cytokines in underpinning relapse. We confirmed AR expression in CD34+ vascular endothelium of biopsy tissue and human vascular endothelial cells (HVEC). Enzalutamide attenuated angiogenic tubule formation and induced cytotoxicity in HVECs in vitro, and rapidly induced sustained hypoxia in LNCaP xenografts. Subsequent reoxygenation, following prolonged enzalutamide treatment, was associated with increased tumor vessel density and accelerated tumor growth. Hypoxia increased AR expression and transcriptional activity in prostate cells in vitro. Coinhibition of IL8 and VEGF-A restored tumor response in the presence of enzalutamide, confirming the functional importance of their elevated expression in enzalutamide-resistant models. Moreover, coinhibition of IL8 and VEGF-A resulted in a durable, effective resolution of enzalutamide-sensitive prostate tumors. We conclude that concurrent inhibition of two hypoxia-induced factors, IL8 and VEGF-A, prolongs tumor sensitivity to enzalutamide in preclinical models and may delay the onset of enzalutamide resistance. IMPLICATIONS: Targeting hypoxia-induced signaling may extend the therapeutic benefit of enzalutamide, providing an improved treatment strategy for patients with resistant disease.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Endothelial Cells/metabolism , Humans , Hypoxia/drug therapy , Interleukin-8/genetics , Male , Neoplasm Recurrence, Local/drug therapy , Nitriles/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Tumor Microenvironment , Vascular Endothelial Growth Factor A/genetics
3.
NAR Cancer ; 2(3): zcaa012, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32743555

ABSTRACT

Functional impairment of the tumour suppressor PTEN is common in primary prostate cancer and has been linked to relapse post-radiotherapy (post-RT). Pre-clinical modelling supports elevated CXC chemokine signalling as a critical mediator of PTEN-depleted disease progression and therapeutic resistance. We assessed the correlation of PTEN deficiency with CXC chemokine signalling and its association with clinical outcomes. Gene expression analysis characterized a PTEN LOW/CXCR1HIGH/CXCR2HIGH cluster of tumours that associates with earlier time to biochemical recurrence [hazard ratio (HR) 5.87 and 2.65, respectively] and development of systemic metastasis (HR 3.51). In vitro, CXCL signalling was further amplified following exposure of PTEN-deficient prostate cancer cell lines to ionizing radiation (IR). Inhibition of CXCR1/2 signalling in PTEN-depleted cell-based models increased IR sensitivity. In vivo, administration of a CXCR1/2-targeted pepducin (x1/2pal-i3), or CXCR2-specific antagonist (AZD5069), in combination with IR to PTEN-deficient xenografts attenuated tumour growth and progression compared to control or IR alone. Post-mortem analysis confirmed that x1/2pal-i3 administration attenuated IR-induced CXCL signalling and anti-apoptotic protein expression. Interventions targeting CXC chemokine signalling may provide an effective strategy to combine with RT in locally advanced prostate cancer patients with known presence of PTEN-deficient foci.

4.
Cancers (Basel) ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396656

ABSTRACT

Radical radiotherapy, often in combination with hormone ablation, is a safe and effective treatment option for localised or locally-advanced prostate cancer. However, up to 30% of patients with locally advanced PCa will go on to develop biochemical failure, within 5 years, following initial radiotherapy. Improving radiotherapy response is clinically important since patients exhibiting biochemical failure develop castrate-resistant metastatic disease for which there is no curative therapy and median survival is 8-18 months. The aim of this research was to determine if loss of PTEN (highly prevalent in advanced prostate cancer) is a novel therapeutic target in the treatment of advanced prostate cancer. Previous work has demonstrated PTEN-deficient cells are sensitised to inhibitors of ATM, a key regulator in the response to DSBs. Here, we have shown the role of PTEN in cellular response to IR was both complex and context-dependent. Secondly, we have confirmed ATM inhibition in PTEN-depleted cell models, enhances ionising radiation-induced cell killing with minimal toxicity to normal prostate RWPE-1 cells. Furthermore, combined treatment significantly inhibited PTEN-deficient tumour growth compared to PTEN-expressing counterparts, with minimal toxicity observed. We have further shown PTEN loss is accompanied by increased endogenous levels of ROS and DNA damage. Taken together, these findings provide pre-clinical data for future clinical evaluation of ATM inhibitors as a neoadjuvant/adjuvant in combination with radiation therapy in prostate cancer patients harbouring PTEN mutations.

5.
Methods Mol Biol ; 1786: 195-206, 2018.
Article in English | MEDLINE | ID: mdl-29786794

ABSTRACT

Cancer studies have entered an era that is heavily focused on the contribution of the tumor microenvironment. For this reason, in vivo experimentation in an immunodeficient model system is no longer fit for purpose. As a consequence, numerous genetically engineered mouse models (GEMMs) which self-develop tumors have been developed to allow experiments to be performed in a fully immunocompetent setting. One of the most commonly used technologies is Cre-loxP recombination due to its unique ability to control target gene expression in a specified tissue type. However, the major limitation of these models remains the inability to generate sufficient numbers of age-matched mice for a synchronized experimental start date. For this reason, the derivation of cell lines from genetically modified murine prostate tissue is desirable and allows for the generation of syngeneic models via subcutaneous or orthotopic injection.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , Breeding , Cell Line, Tumor , Gene Knockout Techniques , Gene Targeting , Genotype , Humans , Male , Mice , Recombination, Genetic , Transplantation, Isogeneic
6.
Eur Urol ; 71(3): 328-329, 2017 03.
Article in English | MEDLINE | ID: mdl-27234999
7.
Oncotarget ; 7(7): 7885-98, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26799286

ABSTRACT

PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.


Subject(s)
Chemoradiotherapy , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Macrophages/pathology , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Blotting, Western , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cells, Cultured , Chemotaxis/drug effects , Chemotaxis/radiation effects , DNA Methylation/drug effects , DNA Methylation/radiation effects , Flow Cytometry , Humans , Immunoenzyme Techniques , Inhibitor of Apoptosis Proteins/drug effects , Inhibitor of Apoptosis Proteins/metabolism , Interleukin-8/metabolism , Macrophages/drug effects , Macrophages/radiation effects , Male , Neoplasm Grading , Prognosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , X-Rays
8.
Oncotarget ; 6(34): 36762-73, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26447611

ABSTRACT

CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of ß1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the ß1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with ß1-integrin and repressed HA-induced, CD44-mediated activation of ß1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and ß1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cortactin/metabolism , Fibronectins/metabolism , Hyaluronan Receptors/metabolism , Integrin alpha5beta1/metabolism , Paxillin/metabolism , Breast Neoplasms/genetics , Cell Adhesion/physiology , Cell Line, Tumor , Female , Humans , Integrin alpha5beta1/biosynthesis , Signal Transduction
9.
Oncotarget ; 6(14): 12763-73, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25906747

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the Western world. It is becoming increasingly clear that CRC is a diverse disease, as exemplified by the identification of subgroups of CRC tumours that are driven by distinct biology. Recently, a number of studies have begun to define panels of diagnostically relevant markers to align patients into individual subgroups in an attempt to give information on prognosis and treatment response. We examined the immunohistochemical expression profile of 18 markers, each representing a putative role in cancer development, in 493 primary colorectal carcinomas using tissue microarrays. Through unsupervised clustering in stage II cancers, we identified two cluster groups that are broadly defined by inflammatory or immune-related factors (CD3, CD8, COX-2 and FOXP3) and stem-like factors (CD44, LGR5, SOX2, OCT4). The expression of the stem-like group markers was associated with a significantly worse prognosis compared to cases with lower expression. In addition, patients classified in the stem-like subgroup displayed a trend towards a benefit from adjuvant treatment. The biologically relevant and poor prognostic stem-like group could also be identified in early stage I cancers, suggesting a potential opportunity for the identification of aggressive tumors at a very early stage of the disease.


Subject(s)
Colorectal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Aged , Biomarkers, Tumor/analysis , Cluster Analysis , Colorectal Neoplasms/mortality , Female , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Proportional Hazards Models , Tissue Array Analysis
10.
Oncotarget ; 6(13): 11465-76, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25888636

ABSTRACT

Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , Hyaluronan Receptors/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Adhesion , Cell Line, Tumor , Cell Survival , Disease-Free Survival , Female , Gene Knockdown Techniques , Humans , Hyaluronan Receptors/genetics , Kaplan-Meier Estimate , Lymphatic Metastasis , Mice, Nude , Middle Aged , Neoplasm Grading , Phenotype , Proportional Hazards Models , RNA Interference , Risk Factors , Signal Transduction , Time Factors , Transfection , Tumor Burden
11.
Oncotarget ; 5(13): 4895-908, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24970800

ABSTRACT

Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP.


Subject(s)
Chemokine CCL2/metabolism , Chemokine CXCL12/metabolism , Interleukin-8/metabolism , PTEN Phosphohydrolase/deficiency , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chemokine CCL2/genetics , Chemokine CCL2/pharmacology , Chemokine CXCL12/genetics , Chemokine CXCL12/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Immunoblotting , Interleukin-8/genetics , Interleukin-8/pharmacology , Male , Neoplasm Invasiveness , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Stromal Cells/metabolism
12.
Oncotarget ; 5(6): 1609-20, 2014 Mar 30.
Article in English | MEDLINE | ID: mdl-24742492

ABSTRACT

TBX2 is an oncogenic transcription factor known to drive breast cancer proliferation. We have identified the cysteine protease inhibitor Cystatin 6 (CST6) as a consistently repressed TBX2 target gene, co-repressed through a mechanism involving Early Growth Response 1 (EGR1). Exogenous expression of CST6 in TBX2-expressing breast cancer cells resulted in significant apoptosis whilst non-tumorigenic breast cells remained unaffected. CST6 is an important tumor suppressor in multiple tissues, acting as a dual protease inhibitor of both papain-like cathepsins and asparaginyl endopeptidases (AEPs) such as Legumain (LGMN). Mutation of the CST6 LGMN-inhibitory domain completely abrogated its ability to induce apoptosis in TBX2-expressing breast cancer cells, whilst mutation of the cathepsin-inhibitory domain or treatment with a pan-cathepsin inhibitor had no effect, suggesting that LGMN is the key oncogenic driver enzyme. LGMN activity assays confirmed the observed growth inhibitory effects were consistent with CST6 inhibition of LGMN. Knockdown of LGMN and the only other known AEP enzyme (GPI8) by siRNA confirmed that LGMN was the enzyme responsible for maintaining breast cancer proliferation. CST6 did not require secretion or glycosylation to elicit its cell killing effects, suggesting an intracellular mode of action. Finally, we show that TBX2 and CST6 displayed reciprocal expression in a cohort of primary breast cancers with increased TBX2 expression associating with increased metastases. We have also noted that tumors with altered TBX2/CST6 expression show poor overall survival. This novel TBX2-CST6-LGMN signaling pathway, therefore, represents an exciting opportunity for the development of novel therapies to target TBX2 driven breast cancers.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Cystatin M/genetics , Cysteine Endopeptidases/metabolism , T-Box Domain Proteins/metabolism , Apoptosis , Blotting, Western , Breast Neoplasms/genetics , Chromatin Immunoprecipitation , Cystatin M/metabolism , Cysteine Endopeptidases/genetics , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , T-Box Domain Proteins/antagonists & inhibitors , T-Box Domain Proteins/genetics , Tumor Cells, Cultured
13.
Pharmaceuticals (Basel) ; 6(8): 929-59, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-24276377

ABSTRACT

It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.

14.
Eur Urol ; 64(2): 177-88, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22939387

ABSTRACT

BACKGROUND: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised. OBJECTIVE: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa. DESIGN, SETTING, AND PARTICIPANTS: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele. INTERVENTIONS: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays. RESULTS AND LIMITATIONS: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study. CONCLUSIONS: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.


Subject(s)
Carcinoma/enzymology , Carcinoma/immunology , Inflammation Mediators/metabolism , Interleukin-8/metabolism , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/immunology , Signal Transduction , Animals , Apoptosis , Autocrine Communication , Carcinoma/genetics , Carcinoma/pathology , Cell Hypoxia , Cell Line, Tumor , Humans , Interleukin-8/genetics , Male , Mice , Mice, Knockout , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA Interference , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , Time Factors , Transcription Factors/metabolism , Transfection , Up-Regulation
15.
PLoS One ; 7(5): e36545, 2012.
Article in English | MEDLINE | ID: mdl-22590561

ABSTRACT

BACKGROUND: The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent. METHODS: The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression. RESULTS: Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P<0.001), and increased 5-FU-induced apoptosis in PC3 cells (P<0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU. CONCLUSIONS: CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Interleukin-8/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Humans , Interleukin-8/genetics , Male , Neoplasm Metastasis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Prostatic Neoplasms/pathology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Signal Transduction/genetics
16.
Breast Cancer Res ; 14(3): R84, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22621373

ABSTRACT

INTRODUCTION: Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells. METHODS: CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion. RESULTS: Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen. CONCLUSION: HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.


Subject(s)
Breast Neoplasms/metabolism , Collagen/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Neoplasms, Basal Cell/metabolism , Serine Proteases/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cathepsin K/metabolism , Cell Line, Tumor , Female , Humans , Hyaluronan Receptors/genetics , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , RNA Interference , RNA, Small Interfering , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Up-Regulation , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
17.
Clin Cancer Res ; 18(14): 3822-33, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22623731

ABSTRACT

PURPOSE: To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)-targeted therapy. EXPERIMENTAL DESIGN: c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions. RESULTS: c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7-mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. CONCLUSION: c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Prostatic Neoplasms , Receptors, Androgen/metabolism , Anilides/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/administration & dosage , Humans , Male , Molecular Targeted Therapy , Neoplasm Staging , Nitriles/administration & dosage , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction , Tosyl Compounds/administration & dosage
18.
Clin Cancer Res ; 17(5): 1044-56, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21364036

ABSTRACT

PURPOSE: Antiangiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their antiangiogenic activity and mechanism of action. EXPERIMENTAL DESIGN: Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration, and Matrigel-dependent tubule formation was determined. They were further evaluated in an ex vivo rat model of neovascularization and in two in vivo mouse models of angiogenesis, that is, the sponge implantation and the intravital microscopy models. Antitumor efficacy was determined in two human tumor xenograft models grown in severe compromised immunodeficient (SCID) mice. Finally, the dependence of peptide on CD44 was determined using a CD44-targeted siRNA approach or in cell lines of differing CD44 status. RESULTS: rFKBPL inhibited endothelial cell migration, tubule formation, and microvessel formation in vitro and in vivo. The region responsible for FKBPL's antiangiogenic activity was identified, and a 24-amino acid peptide (AD-01) spanning this sequence was synthesized. It was potently antiangiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own or in combination with docetaxel. The antiangiogenic activity of FKBPL and AD-01 was dependent on the cell-surface receptor CD44, and signaling downstream of this receptor promoted an antimigratory phenotype. CONCLUSION: FKBPL and its peptide derivative AD-01 have potent antiangiogenic activity. Thus, these agents offer the potential of an attractive new approach to antiangiogenic therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Immunophilins/therapeutic use , Neoplasms/blood supply , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/drug effects , Peptide Fragments/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Animals , Blotting, Western , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Docetaxel , Endothelial Cells/drug effects , Hyaluronan Receptors/genetics , Immunophilins/chemistry , Immunophilins/pharmacology , Immunoprecipitation , Mice , Mice, Inbred BALB C , Mice, SCID , Neoplasms/drug therapy , Peptide Fragments/therapeutic use , RNA, Small Interfering/genetics , Rats , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Tacrolimus Binding Proteins , Taxoids/pharmacology , Taxoids/therapeutic use , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 14(21): 6735-41, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18980965

ABSTRACT

Interleukin-8 (IL-8) is a proinflammatory CXC chemokine associated with the promotion of neutrophil chemotaxis and degranulation. This chemokine activates multiple intracellular signaling pathways downstream of two cell-surface, G protein-coupled receptors (CXCR1 and CXCR2). Increased expression of IL-8 and/or its receptors has been characterized in cancer cells, endothelial cells, infiltrating neutrophils, and tumor-associated macrophages, suggesting that IL-8 may function as a significant regulatory factor within the tumor microenvironment. The induction of IL-8 signaling activates multiple upstream signaling pathways that (a) impinge on gene expression via regulation of numerous transcription factor activities, (b) modulate the cellular proteome at the level of translation, and/or (c) effect the organization of the cell cytoskeleton through posttranslational regulation of regulatory proteins. As a consequence of the diversity of effectors and downstream targets, IL-8 signaling promotes angiogenic responses in endothelial cells, increases proliferation and survival of endothelial and cancer cells, and potentiates the migration of cancer cells, endothelial cells, and infiltrating neutrophils at the tumor site. Accordingly, IL-8 expression correlates with the angiogenesis, tumorigenicity, and metastasis of tumors in numerous xenograft and orthotopic in vivo models. Recently, IL-8 signaling has been implicated in regulating the transcriptional activity of the androgen receptor, underpinning the transition to an androgen-independent proliferation of prostate cancer cells. In addition, stress and drug-induced IL-8 signaling has been shown to confer chemotherapeutic resistance in cancer cells. Therefore, inhibiting the effects of IL-8 signaling may be a significant therapeutic intervention in targeting the tumor microenvironment.


Subject(s)
Interleukin-8/metabolism , Neoplasms/metabolism , Signal Transduction/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokines, CXC/metabolism , Gene Expression Regulation , Humans , Models, Biological , Neovascularization, Pathologic/drug therapy
20.
J Pharmacol Exp Ther ; 327(3): 746-59, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18780829

ABSTRACT

Constitutive activation of nuclear factor (NF)-kappaB is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappaB whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappaB activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappaB activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappaB activation in AIPC cells, increasing the transcription and expression of NF-kappaB-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappaB activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappaBorRNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappaB activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.


Subject(s)
Drug Resistance, Neoplasm , NF-kappa B/metabolism , Organoplatinum Compounds/pharmacology , Prostatic Neoplasms/pathology , Transcription, Genetic , Antineoplastic Agents/pharmacology , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Autocrine Communication , Cell Line , Humans , Interleukin-8/genetics , Interleukin-8/physiology , Male , Neoplasm Metastasis , Oxaliplatin , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...