Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 193(4): 995-1010, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32844244

ABSTRACT

Overyielding, the primary metric for assessing biodiversity effects on ecosystem functions, is often partitioned into "complementarity" and "selection" components, but this reveals nothing about the role of increased resource use, resource-use efficiency, or trait plasticity. We obtained multiple overyielding values by comparing productivity in a five-species mixture to expected values from its component monocultures at a) six levels of nitrogen addition (spanning 0-500 kg N ha-1 year-1) and b) across four seasons. We also measured light, water, and nitrogen use, resource-use efficiency, and three functional traits-leaf nitrogen content, specific leaf area, and leaf area ratio-n mixtures and monocultures. We found strong evidence for non-transgressive overyielding. This was strongest in spring, with mixture productivity exceeding expected values by 20 kg dry matter ha-1 day-1. Peak overyielding was driven by enhanced complementarity, with the two non-N2-fixing forb species far exceeding expected productivity in mixtures. Peak overyielding also coincided with higher water use in the mixture than for any monoculture, and enhanced mixture-resource-use efficiency. There was only weak evidence that trait plasticity influenced overyielding or resource use. Our findings suggest that when complementarity drives overyielding in grassland mixtures, and this is made possible both by increased water use and enhanced efficiency in water, nitrogen, and light use. Our results also suggest that mixtures offer a viable compromise between productivity, resource-use efficiency, and reduced environmental impacts (i.e., nitrate leaching) from intensive agriculture.


Subject(s)
Biodiversity , Ecosystem , Agriculture , Biomass , Nitrogen , Seasons
2.
Ecol Evol ; 7(13): 4907-4918, 2017 07.
Article in English | MEDLINE | ID: mdl-28690818

ABSTRACT

Agricultural production systems face increasing threats from more frequent and extreme weather fluctuations associated with global climate change. While there is mounting evidence that increased plant community diversity can reduce the variability of ecosystem functions (such as primary productivity) in the face of environmental fluctuation, there has been little work testing whether this is true for intensively managed agricultural systems. Using statistical modeling techniques to fit environment-productivity relationships offers an efficient means of leveraging hard-won experimental data to compare the potential variability of different mixtures across a wide range of environmental contexts. We used data from two multiyear field experiments to fit climate-soil-productivity models for two pasture mixtures under intensive grazing-one composed of two drought-sensitive species (standard), and an eight-species mixture including several drought-resistant species (complex). We then used these models to undertake a scoping study estimating the mean and coefficient of variation (CV) of annual productivity for long-term climate data covering all New Zealand on soils with low, medium, or high water-holding capacity. Our results suggest that the complex mixture is likely to have consistently lower CV in productivity, irrespective of soil type or climate regime. Predicted differences in mean annual productivity between mixtures were strongly influenced by soil type and were closely linked to mean annual soil water availability across all soil types. Differences in the CV of productivity were only strongly related to interannual variance in water availability for the lowest water-holding capacity soil. Our results show that there is considerable scope for mixtures including drought-tolerant species to enhance certainty in intensive pastoral systems. This provides justification for investing resources in a large-scale distributed experiment involving many sites under different environmental contexts to confirm these findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...