Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850444

ABSTRACT

Recently proposed methods in intrusion detection are iterating on machine learning methods as a potential solution. These novel methods are validated on one or more datasets from a sparse collection of academic intrusion detection datasets. Their recognition as improvements to the state-of-the-art is largely dependent on whether they can demonstrate a reliable increase in classification metrics compared to similar works validated on the same datasets. Whether these increases are meaningful outside of the training/testing datasets is rarely asked and never investigated. This work aims to demonstrate that strong general performance does not typically follow from strong classification on the current intrusion detection datasets. Binary classification models from a range of algorithmic families are trained on the attack classes of CSE-CIC-IDS2018, a state-of-the-art intrusion detection dataset. After establishing baselines for each class at various points of data access, the same trained models are tasked with classifying samples from the corresponding attack classes in CIC-IDS2017, CIC-DoS2017 and CIC-DDoS2019. Contrary to what the baseline results would suggest, the models have rarely learned a generally applicable representation of their attack class. Stability and predictability of generalized model performance are central issues for all methods on all attack classes. Focusing only on the three best-in-class models in terms of interdataset generalization, reveals that for network-centric attack classes (brute force, denial of service and distributed denial of service), general representations can be learned with flat losses in classification performance (precision and recall) below 5%. Other attack classes vary in generalized performance from stark losses in recall (-35%) with intact precision (98+%) for botnets to total degradation of precision and moderate recall loss for Web attack and infiltration models. The core conclusion of this article is a warning to researchers in the field. Expecting results of proposed methods on the test sets of state-of-the-art intrusion detection datasets to translate to generalized performance is likely a serious overestimation. Four proposals to reduce this overestimation are set out as future work directions.

2.
Sensors (Basel) ; 20(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403335

ABSTRACT

Citizen engagement is one of the key factors for smart city initiatives to remain sustainable over time. This in turn entails providing citizens and other relevant stakeholders with the latest data and tools that enable them to derive insights that add value to their day-to-day life. The massive volume of data being constantly produced in these smart city environments makes satisfying this requirement particularly challenging. This paper introduces Explora, a generic framework for serving interactive low-latency requests, typical of visual exploratory applications on spatiotemporal data, which leverages the stream processing for deriving-on ingestion time-synopsis data structures that concisely capture the spatial and temporal trends and dynamics of the sensed variables and serve as compacted data sets to provide fast (approximate) answers to visual queries on smart city data. The experimental evaluation conducted on proof-of-concept implementations of Explora, based on traditional database and distributed data processing setups, accounts for a decrease of up to 2 orders of magnitude in query latency compared to queries running on the base raw data at the expense of less than 10% query accuracy and 30% data footprint. The implementation of the framework on real smart city data along with the obtained experimental results prove the feasibility of the proposed approach.

3.
Sensors (Basel) ; 19(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091838

ABSTRACT

The Internet-of-Things (IoT) and Smart Cities continue to expand at enormous rates. Centralized Cloud architectures cannot sustain the requirements imposed by IoT services. Enormous traffic demands and low latency constraints are among the strictest requirements, making cloud solutions impractical. As an answer, Fog Computing has been introduced to tackle this trend. However, only theoretical foundations have been established and the acceptance of its concepts is still in its early stages. Intelligent allocation decisions would provide proper resource provisioning in Fog environments. In this article, a Fog architecture based on Kubernetes, an open source container orchestration platform, is proposed to solve this challenge. Additionally, a network-aware scheduling approach for container-based applications in Smart City deployments has been implemented as an extension to the default scheduling mechanism available in Kubernetes. Last but not least, an optimization formulation for the IoT service problem has been validated as a container-based application in Kubernetes showing the full applicability of theoretical approaches in practical service deployments. Evaluations have been performed to compare the proposed approaches with the Kubernetes standard scheduling feature. Results show that the proposed approaches achieve reductions of 70% in terms of network latency when compared to the default scheduling mechanism.

4.
Entropy (Basel) ; 20(1)2017 Dec 23.
Article in English | MEDLINE | ID: mdl-33265095

ABSTRACT

Fog computing extends the cloud computing paradigm by placing resources close to the edges of the network to deal with the upcoming growth of connected devices. Smart city applications, such as health monitoring and predictive maintenance, will introduce a new set of stringent requirements, such as low latency, since resources can be requested on-demand simultaneously by multiple devices at different locations. It is then necessary to adapt existing network technologies to future needs and design new architectural concepts to help meet these strict requirements. This article proposes a fog computing framework enabling autonomous management and orchestration functionalities in 5G-enabled smart cities. Our approach follows the guidelines of the European Telecommunications Standards Institute (ETSI) NFV MANO architecture extending it with additional software components. The contribution of our work is its fully-integrated fog node management system alongside the foreseen application layer Peer-to-Peer (P2P) fog protocol based on the Open Shortest Path First (OSPF) routing protocol for the exchange of application service provisioning information between fog nodes. Evaluations of an anomaly detection use case based on an air monitoring application are presented. Our results show that the proposed framework achieves a substantial reduction in network bandwidth usage and in latency when compared to centralized cloud solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...