Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(1): 84-96, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27181209

ABSTRACT

Melanoma progression is associated with increased invasion and, often, decreased levels of microphthalmia-associated transcription factor (MITF). Accordingly, downregulation of MITF induces invasion in melanoma cells; however, little is known about the underlying mechanisms. Here, we report for the first time that depletion of MITF results in elevation of intracellular GTP levels and increased amounts of active (GTP-bound) RAC1, RHO-A and RHO-C. Concomitantly, MITF-depleted cells display larger number of invadopodia and increased invasion. We further demonstrate that the gene for guanosine monophosphate reductase (GMPR) is a direct MITF target, and that the partial repression of GMPR accounts mostly for the above phenotypes in MITF-depleted cells. Reciprocally, transactivation of GMPR is required for MITF-dependent suppression of melanoma cell invasion, tumorigenicity and lung colonization. Moreover, loss of GMPR accompanies downregulation of MITF in vemurafenib-resistant BRAFV600E-melanoma cells and underlies the increased invasion in these cells. Our data uncover novel mechanisms linking MITF-dependent inhibition of invasion to suppression of guanylate metabolism.


Subject(s)
Guanosine Triphosphate/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Ectopic Gene Expression , Extracellular Matrix/metabolism , Female , GMP Reductase/genetics , GMP Reductase/metabolism , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Intracellular Space/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Melanoma, Experimental , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/genetics , rho GTP-Binding Proteins/metabolism
2.
Cell Death Differ ; 22(11): 1858-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25909885

ABSTRACT

Malignant melanoma possesses one of the highest metastatic potentials among human cancers. Acquisition of invasive phenotypes is a prerequisite for melanoma metastases. Elucidation of the molecular mechanisms underlying melanoma invasion will greatly enhance the design of novel agents for melanoma therapeutic intervention. Here, we report that guanosine monophosphate synthase (GMPS), an enzyme required for the de novo biosynthesis of GMP, has a major role in invasion and tumorigenicity of cells derived from either BRAF(V600E) or NRAS(Q61R) human metastatic melanomas. Moreover, GMPS levels are increased in metastatic human melanoma specimens compared with primary melanomas arguing that GMPS is an attractive candidate for anti-melanoma therapy. Accordingly, for the first time we demonstrate that angustmycin A, a nucleoside-analog inhibitor of GMPS produced by Streptomyces hygroscopius efficiently suppresses melanoma cell invasion in vitro and tumorigenicity in immunocompromised mice. Our data identify GMPS as a powerful driver of melanoma cell invasion and warrant further investigation of angustmycin A as a novel anti-melanoma agent.


Subject(s)
Guanosine Monophosphate/metabolism , Melanoma/enzymology , Nucleotidyltransferases/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Female , Humans , Immunoblotting , Immunohistochemistry , Melanoma/pathology , Mice , Mice, SCID , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Skin Neoplasms , Melanoma, Cutaneous Malignant
3.
Oncogene ; 31(12): 1484-92, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-21822300

ABSTRACT

Oncoprotein C-MYC is overexpressed in human metastatic melanomas and melanoma-derived cells where it is required for the suppression of oncogene-induced senescence (OIS). The genetic events that maintain high levels of C-MYC in melanoma cells and their role in OIS are unknown. Here we report that C-MYC in cells from several randomly chosen melanoma lines was upregulated at the protein level, and largely because of the increased protein stability. Of all known regulators of C-MYC stability, levels of B56α subunit of the PP2A tumor suppressor complex were substantially suppressed in all human melanoma cells compared with normal melanocytes. Accordingly, immunohistochemical analysis revealed that the lowest and the highest amounts of PP2A-B56α were predominantly detected in metastatic melanoma tissues and in primary melanomas from patients with good clinical outcome, respectively. Importantly, PP2A-B56α overexpression suppressed C-MYC in melanoma cells and induced OIS, whereas depletion of PP2A-B56α in normal human melanocytes upregulated C-MYC protein levels and suppressed BRAF(V600E)- and, less efficiently, NRAS(Q61R)-induced senescence. Our data reveal a mechanism of C-MYC overexpression in melanoma cells and identify a functional role for PP2A-B56α in OIS of melanocytic cells.


Subject(s)
Genes, myc , Melanoma/genetics , Protein Phosphatase 2/metabolism , Cell Line, Tumor , Cellular Senescence , Humans , Melanocytes/metabolism , Melanoma/secondary , Protein Stability , Up-Regulation
4.
Oncogene ; 27(52): 6623-34, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18679422

ABSTRACT

Malignant melanomas often harbor activating mutations in BRAF (V600E) or, less frequently, in NRAS (Q61R). Intriguingly, the same mutations have been detected at higher incidences in benign nevi, which are largely composed of senescent melanocytes. Overexpression of BRAF(V600E) or NRAS(Q61R) in human melanocytes in vitro has been shown to induce senescence, although via different mechanisms. How oncogene-induced senescence is overcome during melanoma progression remains unclear. Here, we report that in the majority of analysed BRAF(V600E)- or NRAS(Q61R)-expressing melanoma cells, C-MYC depletion induced different yet overlapping sets of senescence phenotypes that are characteristic of normal melanocytes undergoing senescence due to overexpression of BRAF(V600E) or NRAS(Q61R), respectively. These senescence phenotypes were p16(INK4A)- or p53-independent, however, several of them were suppressed by genetic or pharmacological inhibition of BRAF(V600E) or phosphoinositide 3-kinase pathways, including rapamycin-mediated inhibition of mTOR-raptor in NRAS(Q61R)-expressing melanoma cells. Reciprocally, overexpression of C-MYC in normal melanocytes suppressed BRAF(V600E)-induced senescence more efficiently than NRAS(Q61R)-induced senescence, which agrees with the generally higher rates of activating mutations in BRAF than NRAS gene in human cutaneous melanomas. Our data suggest that one of the major functions of C-MYC overexpression in melanoma progression is to continuous suppress BRAF(V600E)- or NRAS(Q61R)-dependent senescence programs.


Subject(s)
Cellular Senescence , Gene Expression , Melanoma/genetics , Melanoma/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Disease Progression , Gene Deletion , Humans , Melanocytes/metabolism , Melanoma/enzymology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...