Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(3): 85, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367078

ABSTRACT

The instantaneous growth of the world population is intensifying the pressure on the agricultural sector. On the other hand, the critical climate changes and increasing load of pollutants in the soil are imposing formidable challenges on agroecosystems, affecting productivity and quality of the crops. Microplastics are among the most prevalent pollutants that have already invaded all terrestrial and aquatic zones. The increasing microplastic concentration in soil critically impacts crop plants growth and yield. The current review elaborates on the behaviors of microplastics in soil and their impact on soil quality and plant growth. The study shows that microplastics alter the soil's biophysical properties, including water-holding capacity, bulk density, aeration, texture, and microbial composition. In addition, microplastics interact with multiple pollutants, such as polyaromatic hydrocarbons and heavy metals, making them more bioavailable to crop plants. The study also provides a detailed insight into the current techniques available for the isolation and identification of soil microplastics, providing solutions to some of the critical challenges faced and highlighting the research gaps. In our study, we have taken a holistic, comprehensive approach by analysing and comparing various interconnected aspects to provide a deeper understanding of all research perspectives on microplastics in agroecosystems.


Subject(s)
Environmental Pollutants , Soil Pollutants , Microplastics/toxicity , Soil , Plastics , Soil Pollutants/analysis , Environmental Pollutants/analysis , Crops, Agricultural , Ecosystem
2.
NanoImpact ; 27: 100412, 2022 07.
Article in English | MEDLINE | ID: mdl-35934234

ABSTRACT

Nanoplastics finds its presence in most of the consumer products. Their chance of coming in contact with human cells and components is rampant. This study focuses on the interaction of polystyrene nanoplastics (PSNPs) with human serum albumin (HSA), ultimately causing structural and functional properties of the protein. Fluorescence and UV-Visible spectroscopic studies reported that PSNPs form a spontaneous ground-state complex with HSA, by hydrogen bonding, van der waal's, and hydrophobic force of attraction. This causes changes in the environment around major aromatic amino acids, especially tryptophan-214, which has a strong affinity with PSNPs. Further docking analysis confirmed hydrophobic interactions between PSNPs and aromatic amino acids in subdomain IIA of HSA. A shift in amide bands in HSA, as determined by FTIR analysis confirmed the disturbances in its secondary structure followed by reordering which will lead to the unfolding of HSA. Besides, PSNPs reduce the esterase activity of HSA by competitive inhibition. This molecular-level information such as binding energy, binding site, binding forces, reversible or irreversible binding, and structural changes of protein will shed light on the extent of toxicity in humans. This study will emphasize the urgent need for regulation of the use of nanoplastics (NPs) in consumer products, as well as the need for more research to determine the fate of NPs in the biological system.


Subject(s)
Microplastics , Serum Albumin, Human , Amino Acids, Aromatic/metabolism , Circular Dichroism , Humans , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...