Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778454

ABSTRACT

Rett syndrome (RTT) is a severe neurodevelopmental disorder that arise from de novo mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Circulating levels of the adipocyte hormone leptin are elevated in RTT patients and rodent models of the disease. Leptin targets a large number of brain structures and regulates a wide range of developmental and physiological functions which are altered in RTT. We hypothesized that elevated leptin levels might contribute to RTT pathogenesis. Accordingly, we show that pharmacological antagonism of leptin or genetic reduction of leptin production prevents the degradation of health status, weight loss and the progression of breathing and locomotor deficits. At the neuronal level, the anti-leptin strategies rescue the hippocampal excitatory/inhibitory imbalance and synaptic plasticity impairment. Targeting leptin might therefore represent a new approach for RTT treatment.

2.
Front Cell Neurosci ; 15: 724976, 2021.
Article in English | MEDLINE | ID: mdl-34602980

ABSTRACT

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. Mouse models of RTT show reduced expression of the cation-chloride cotransporter KCC2 and altered chloride homeostasis at presymptomatic stages. However, whether these alterations persist to late symptomatic stages has not been studied. Here we assess KCC2 and NKCC1 expressions and chloride homeostasis in the hippocampus of early [postnatal (P) day 30-35] and late (P50-60) symptomatic male Mecp2-null (Mecp2 -/y) mice. We found (i) no difference in the relative amount, but an over-phosphorylation, of KCC2 and NKCC1 between wild-type (WT) and Mecp2 -/y hippocampi and (ii) no difference in the inhibitory strength, nor reversal potential, of GABA A -receptor-mediated responses in Mecp2 -/y CA3 pyramidal neurons compared to WT at any stages studied. Altogether, these data indicate the presence of a functional chloride extrusion mechanism in Mecp2 -/y CA3 pyramidal neurons at symptomatic stages.

3.
Sci Signal ; 14(683)2021 05 18.
Article in English | MEDLINE | ID: mdl-34006608

ABSTRACT

Developing hippocampal neurons undergo rapid synaptogenesis in response to neurotrophic signals to form and refine circuit connections. The adipokine leptin is a satiety factor with neurotrophic actions, which potentiates both glutamatergic and GABAergic synaptogenesis in the hippocampus during neonatal development. Brief exposure to leptin enhances GABAA receptor-dependent synaptic currents in hippocampal neurons. Here, using molecular and electrophysiological techniques, we found that leptin increased the surface localization of GABAA receptors and the number of functional GABAergic synapses in hippocampal cultures from male and female rat pups. Leptin increased the interaction between GABAA receptors and the Rho guanine exchange factor ß-PIX (a scaffolding protein at GABAergic postsynaptic sites) in a manner dependent on the kinase CaMKK. We also found that the leptin receptor and ß-PIX formed a complex, the amount of which transiently increased upon leptin receptor activation. Furthermore, Tyr985 in the leptin receptor and the SH3 domain of ß-PIX are crucial for this interaction, which was required for the developmental increase in GABAergic synaptogenesis. Our results suggest a mechanism by which leptin promotes GABAergic synaptogenesis in hippocampal neurons and reveal further complexity in leptin receptor signaling and its interactome.


Subject(s)
Leptin , Neurons , Rho Guanine Nucleotide Exchange Factors , Animals , Female , Hippocampus/cytology , Leptin/metabolism , Male , Neurons/metabolism , Rats , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Synapses/metabolism
4.
Mol Brain ; 13(1): 151, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33183317

ABSTRACT

The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 activity and is present during a restricted period of postnatal development. This study confirms and extends the role of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of leptin may contribute to neurological disorders.


Subject(s)
Chlorides/metabolism , Down-Regulation , Hippocampus/metabolism , Homeostasis , Leptin/pharmacology , Symporters/metabolism , Animals , Animals, Newborn , Down-Regulation/drug effects , Homeostasis/drug effects , Rats, Wistar , K Cl- Cotransporters
5.
J Neurosci ; 40(37): 7054-7064, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32817248

ABSTRACT

Leptin signaling within the nucleus of the solitary tract (NTS) contributes to the control of food intake, and injections of leptin into the NTS reduce meal size and increase the efficacy of vagus-mediated satiation signals. Leptin receptors (LepRs) are expressed by vagal afferents as well as by a population of NTS neurons. However, the electrophysiological properties of LepR-expressing NTS neurons have not been well characterized, and it is unclear how leptin might act on these neurons to reduce food intake. To address this question, we recorded from LepR-expressing neurons in horizontal brain slices containing the NTS from male and female LepR-Cre X Rosa-tdTomato mice. We found that the vast majority of NTS LepR neurons received monosynaptic innervation from vagal afferent fibers and LepR neurons exhibited large synaptic NMDA receptor (NMDAR)-mediated currents compared with non-LepR neurons. During high-frequency stimulation of vagal afferents, leptin increased the size of NMDAR-mediated currents, but not AMPAR-mediated currents. Leptin also increased the size of evoked EPSPs and the ability of low-intensity solitary tract stimulation to evoke action potentials in LepR neurons. These effects of leptin were blocked by bath applying a competitive NMDAR antagonist (DCPP-ene) or by an NMDAR channel blocker applied through the recording pipette (MK-801). Last, feeding studies using male rats demonstrate that intra-NTS injections of DCPP-ene attenuate reduction of overnight food intake following intra-NTS leptin injection. Our results suggest that leptin acts in the NTS to reduce food intake by increasing NMDAR-mediated currents, thus enhancing NTS sensitivity to vagal inputs.SIGNIFICANCE STATEMENT Leptin is a hormone that critically impacts food intake and energy homeostasis. The nucleus of the solitary tract (NTS) is activated by vagal afferents from the gastrointestinal tract, which promotes termination of a meal. Injection of leptin into the NTS inhibits food intake, while knockdown of leptin receptors (LepRs) in NTS neurons increases food intake. However, little was known about how leptin acts in the NTS neurons to inhibit food intake. We found that leptin increases the sensitivity of LepR-expressing neurons to vagal inputs by increasing NMDA receptor-mediated synaptic currents and that NTS NMDAR activation contributes to leptin-induced reduction of food intake. These findings suggest a novel mechanism by which leptin, acting in the NTS, could potentiate gastrointestinal satiation signals.


Subject(s)
Excitatory Postsynaptic Potentials , Leptin/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Solitary Nucleus/metabolism , Vagus Nerve/metabolism , Animals , Dizocilpine Maleate/pharmacology , Eating , Excitatory Amino Acid Antagonists/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Proline/analogs & derivatives , Proline/pharmacology , Pyridines/pharmacology , Rats , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Synapses/metabolism , Synapses/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology
6.
Sci Rep ; 10(1): 9028, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493978

ABSTRACT

Brain-derived neurotrophic factor (BDNF) signals through its high affinity receptor Tropomyosin receptor kinase-B (TrkB) to regulate neuronal development, synapse formation and plasticity. In rodents, genetic disruption of Bdnf and TrkB leads to weight gain and a spectrum of neurobehavioural phenotypes. Here, we functionally characterised a de novo missense variant in BDNF and seven rare variants in TrkB identified in a large cohort of people with severe, childhood-onset obesity. In cells, the E183K BDNF variant resulted in impaired processing and secretion of the mature peptide. Multiple variants in the kinase domain and one variant in the extracellular domain of TrkB led to a loss of function through multiple signalling pathways, impaired neurite outgrowth and dominantly inhibited glutamatergic synaptogenesis in hippocampal neurons. BDNF/TrkB variant carriers exhibited learning difficulties, impaired memory, hyperactivity, stereotyped and sometimes, maladaptive behaviours. In conclusion, human loss of function BDNF/TrkB variants that impair hippocampal synaptogenesis may contribute to a spectrum of neurobehavioural disorders.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Neurogenesis/drug effects , Receptor, trkB/metabolism , Adolescent , Child , Child, Preschool , Female , Hippocampus/metabolism , Hippocampus/physiology , Humans , Male , Neurogenesis/physiology , Neuronal Outgrowth/drug effects , Neurons/metabolism , Phosphorylation , Protein Kinases , Signal Transduction/drug effects
7.
Mol Cell Neurosci ; 106: 103500, 2020 07.
Article in English | MEDLINE | ID: mdl-32438059

ABSTRACT

Normal development of neuronal connections in the hippocampus requires neurotrophic signals, including the cytokine leptin. During neonatal development, leptin induces formation and maturation of dendritic spines, the main sites of glutamatergic synapses in the hippocampal neurons. However, the molecular mechanisms for leptin-induced synaptogenesis are not entirely understood. In this study, we reveal two novel targets of leptin in developing hippocampal neurons and address their role in synaptogenesis. First target is Kruppel-Like Factor 4 (KLF4), which we identified using a genome-wide target analysis strategy. We show that leptin upregulates KLF4 in hippocampal neurons and that leptin signaling is important for KLF4 expression in vivo. Furthermore, KLF4 is required for leptin-induced synaptogenesis, as shKLF4 blocks and upregulation of KLF4 phenocopies it. We go on to show that KLF4 requires its signal transducer and activator of transcription 3 (STAT3) binding site and thus potentially blocks STAT3 activity to induce synaptogenesis. Second, we show that leptin increases the expression of suppressor of cytokine signaling 3 (SOCS3), another well-known inhibitor of STAT3, in developing hippocampal neurons. SOCS3 is also required for leptin-induced synaptogenesis and sufficient to stimulate it alone. Finally, we show that constitutively active STAT3 blocks the effects of leptin on spine formation, while the targeted knockdown of STAT3 is sufficient to induce it. Overall, our data demonstrate that leptin increases the expression of both KLF4 and SOCS3, inhibiting the activity of STAT3 in the hippocampal neurons and resulting in the enhancement of glutamatergic synaptogenesis during neonatal development.


Subject(s)
Hippocampus/drug effects , Leptin/pharmacology , Neurons/drug effects , Signal Transduction/drug effects , Synapses/drug effects , Animals , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Female , Hippocampus/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Neurogenesis/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Synapses/metabolism , Transcriptome
8.
Heliyon ; 6(12): e05780, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33409387

ABSTRACT

The ability to access intracellular targets is of vital importance as the number of identified druggable intracellular targets increases every year. However, intracellular delivery poses a formidable barrier, as many potential therapeutics are impermeable to cell membranes, which hinders their practical application in drug development. Herein we present de novo-designed unnatural cell penetrating peptide foldamers utilizing a 2,3-Didehydro-2-deoxyneuraminic acid (Neu2en) scaffold. Conveniently, this scaffold is amenable to standard Fmoc-based solid-phase peptide synthesis, with the advantages of tunable secondary structures and enhanced biostability. Flow cytometry and live-cell confocal microscopy studies showed that these Neu2en-based peptides, hereinafter termed SialoPen peptides, have significantly superior uptake in HeLa and primary neuronal hippocampal cells, outperforming the classical cell permeable peptides penetratin and HIV-TAT.

9.
Endocrinology ; 161(2)2020 02 01.
Article in English | MEDLINE | ID: mdl-31840160

ABSTRACT

Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.


Subject(s)
Hippocampus/physiology , Leptin/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, Leptin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Animals , HEK293 Cells , Humans , Phosphorylation , Primary Cell Culture , Rats
10.
Front Cell Neurosci ; 13: 254, 2019.
Article in English | MEDLINE | ID: mdl-31213989

ABSTRACT

The adipose-derived circulating hormone leptin plays a pivotal role in the control of energy balance and body weight. Sound data indicate that this hormone also acts as an important developmental signal impacting a number of brain regions during fetal and postnatal stages. Leptin levels surge during the two first postnatal weeks of life in rodents. This period is characterized by the presence of early network driven activity in the immature hippocampus, the so-called Giant Depolarizing Potentials (GDPs). GDPs are thought to contribute to the wiring of the hippocampal network. We therefore tested the effect of leptin on GDPs. Leptin increased GDPs frequency between the postnatal days (P) 1 and 3 via a calcium/Calmodulin-dependent kinase (CaMK) and extracellular signal-related kinase (ERK) dependent pathways. Between P6 and P7, leptin inhibited the frequency of GDPs through the activation of large conductance Ca2+ activated K+ (BK) channels driven by a phosphoinositol-3 kinase (PI3K) dependent pathway. These results show that leptin exerts a bi-directional and age-dependent control of GDPs and extends the scope of leptin's action in the developing brain.

11.
Endocrinology ; 160(8): 1982-1998, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31199479

ABSTRACT

Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors. A number of the signaling pathways regulated by LepRb are known, but how membrane LepRb levels are regulated in the central nervous system is not well understood. Here, we show that the lysosomal inhibitor chloroquine increases LepRb expression in hippocampal cultures, suggesting that LepRb is degraded in the lysosome. Furthermore, we show that leptin increases surface expression of its own receptor by decreasing the level of ubiquitinated LepRbs. This decrease is mediated by the deubiquitinase ubiquitin-specific protease 8 (USP8), which we show is in complex with LepRb. Acute leptin stimulation increases USP8 activity. Moreover, leptin stimulates USP8 gene expression through cAMP response element-binding protein (CREB)-dependent transcription, an effect blocked by expression of a dominant-negative CREB or with short hairpin RNA knockdown of CREB. Increased expression of USP8 causes increased surface localization of LepRb, which in turn enhances leptin-mediated activation of the MAPK kinase/extracellular signal-regulated kinase pathway and CREB activation. Lastly, increased USP8 expression increases glutamatergic synapse formation in hippocampal cultures, an effect dependent on expression of LepRbs. Leptin-stimulated synapse formation also requires USP8. In conclusion, we show that USP8 deubiquitinates LepRb, thus inhibiting lysosomal degradation and enhancing surface localization of LepRb, which are essential for leptin-stimulated synaptogenesis in the hippocampus.


Subject(s)
Endopeptidases/physiology , Endosomal Sorting Complexes Required for Transport/physiology , Leptin/pharmacology , Receptors, Leptin/metabolism , Synapses/physiology , Ubiquitin Thiolesterase/physiology , Ubiquitination , Animals , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/physiology , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Ubiquitin Thiolesterase/genetics
12.
Front Mol Neurosci ; 11: 357, 2018.
Article in English | MEDLINE | ID: mdl-30356860

ABSTRACT

There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development.

13.
Chem Commun (Camb) ; 51(25): 5463-6, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25733181

ABSTRACT

A dimeric branched peptide TATp-D designed as an analogue of the HIV-Tat protein transduction domain (TATp), a prototypical cell penetrating peptide (CPP), demonstrates significantly enhanced cell uptake at 0.25 to 2.5 µM. Live cell confocal laser scanning microscopy revealed that multivalency dramatically improved the permeation potency of TATp-D to HeLa and primary hippocampal neuronal cells. The observed enhanced ability of TATp-D to translocate through the membrane is highlighted by a non-linear dependence on concentration, exhibiting the greatest uptake at sub-micromolar concentrations as compared to TATp. Multimerization via bis-Fmoc Lysine offered a synthetically straightforward method to investigate the effects of multivalent CPPs while offering orthogonal handles for cargo attachment, increasing the utility of CPPs at significantly lower concentrations.


Subject(s)
Cell Membrane Permeability , Hippocampus/cytology , Neurons/cytology , Neurons/metabolism , Protein Multimerization , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/metabolism , HeLa Cells , Humans , Molecular Conformation
14.
Neurotoxicology ; 46: 125-36, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25556122

ABSTRACT

Environmental toxicants such as bisphenol-A (BPA) and polychlorinated biphenyls (PCBs) are prevalent in our water supply, soil, and many food products and can profoundly affect the central nervous system. Both BPA and PCBs can disrupt endocrine signaling, which is important for auditory development and function, but the effect of these toxicants on the auditory periphery is not understood. In this study we investigated the effect of PCB-95 and BPA on lateral line development, function, and regeneration in larval zebrafish. The lateral line is a system of mechanosensory hair cells on the exterior of the fish that are homologous to the hair cells located in the mammalian inner ear. We found that PCB-95 had no effect on lateral line development or hair cell survival. BPA also did not affect lateral line development, but instead had a significant effect on both hair cell survival and regeneration. BPA-induced hair cell loss is both dose- and time-dependent, with concentrations of 1 µM or higher killing lateral line hair cells during a 24h exposure period. Pharmacologic manipulation experiments suggest that BPA kills hair cells via activation of oxidative stress pathways, similar to prior reports of BPA toxicity in other tissues. We also observed that hair cells killed with neomycin, a known ototoxin, failed to regenerate normally when BPA was present, suggesting that BPA in aquatic environments could impede innate regenerative responses in fishes. Collectively, these data demonstrate that BPA can have detrimental effects on sensory systems, both in aquatic life and perhaps in terrestrial organisms, including humans.


Subject(s)
Benzhydryl Compounds/toxicity , Environmental Pollutants/toxicity , Hair Cells, Vestibular/drug effects , Lateral Line System/cytology , Phenols/toxicity , Polychlorinated Biphenyls/toxicity , Analysis of Variance , Animals , Animals, Genetically Modified , Cell Death/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Glutathione/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Larva , Lateral Line System/drug effects , Oxidative Stress/drug effects , Regeneration/drug effects , Time Factors , Transcription Factor Brn-3C/genetics , Transcription Factor Brn-3C/metabolism , Zebrafish/growth & development
15.
J Pharmacol Exp Ther ; 351(2): 390-402, 2014 11.
Article in English | MEDLINE | ID: mdl-25187433

ABSTRACT

A subset of angiotensin IV (AngIV)-related molecules are known to possess procognitive/antidementia properties and have been considered as templates for potential therapeutics. However, this potential has not been realized because of two factors: 1) a lack of blood-brain barrier-penetrant analogs, and 2) the absence of a validated mechanism of action. The pharmacokinetic barrier has recently been overcome with the synthesis of the orally active, blood-brain barrier-permeable analog N-hexanoic-tyrosine-isoleucine-(6) aminohexanoic amide (dihexa). Therefore, the goal of this study was to elucidate the mechanism that underlies dihexa's procognitive activity. Here, we demonstrate that dihexa binds with high affinity to hepatocyte growth factor (HGF) and both dihexa and its parent compound Norleucine 1-AngIV (Nle(1)-AngIV) induce c-Met phosphorylation in the presence of subthreshold concentrations of HGF and augment HGF-dependent cell scattering. Further, dihexa and Nle(1)-AngIV induce hippocampal spinogenesis and synaptogenesis similar to HGF itself. These actions were inhibited by an HGF antagonist and a short hairpin RNA directed at c-Met. Most importantly, the procognitive/antidementia capacity of orally delivered dihexa was blocked by an HGF antagonist delivered intracerebroventricularly as measured using the Morris water maze task of spatial learning.


Subject(s)
Angiotensin II/analogs & derivatives , Cognition/physiology , Peptides/metabolism , Proto-Oncogene Proteins c-met/metabolism , Serine Endopeptidases/metabolism , Synapses/metabolism , Angiotensin II/metabolism , Animals , Cell Line , Dogs , HEK293 Cells , Hippocampus/metabolism , Humans , Madin Darby Canine Kidney Cells , Male , Oligopeptides/metabolism , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
16.
Front Cell Neurosci ; 8: 235, 2014.
Article in English | MEDLINE | ID: mdl-25177272

ABSTRACT

It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission.

17.
J Neurosci ; 34(30): 10022-33, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25057204

ABSTRACT

Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and ß-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, ß-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Dendritic Spines/metabolism , Hippocampus/metabolism , Leptin/physiology , TRPC Cation Channels/physiology , Animals , Animals, Newborn , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cells, Cultured , Hippocampus/cytology , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
18.
Mol Endocrinol ; 28(7): 1073-87, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24877561

ABSTRACT

Leptin acts in the hippocampus to enhance cognition and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. Although leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood. Here we show that leptin receptors (LepRs) are critical for hippocampal dendritic spine formation in vivo because db/db mice lacking the long form of the leptin receptor (LepRb) have reduced spine density on CA1 and CA3 neurons. Leptin promotes the formation of mature spines and functional glutamate synapses on hippocampal pyramidal neurons in both dissociated and slice cultures. These effects are blocked by short hairpin RNAs specifically targeting the LepRb and are absent in cultures from db/db mice. Activation of the LepR leads to cAMP response element-binding protein (CREB) phosphorylation and initiation of CREB-dependent transcription via the MAPK kinase/Erk pathway. Furthermore, both Mek/Erk and CREB activation are required for leptin-induced synaptogenesis. Leptin also increases expression of microRNA-132 (miR132), a well-known CREB target, which is also required for leptin-induced synaptogenesis. Last, leptin suppresses the expression of p250GAP, a miR132 target, and this suppression is obligatory for leptin's effects as is the downstream target of p250GAP, Rac1. LepRs appear to be critical in vivo as db/db mice have lowered hippocampal miR132 levels and elevated p250GAP expression. In conclusion, we identify a novel signaling pathway by which leptin increases synaptogenesis through inducing CREB transcription and increasing microRNA-mediated suppression of p250GAP activity, thus removing a known inhibitor of Rac1-stimulated synaptogenesis.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , GTPase-Activating Proteins/biosynthesis , Leptin/metabolism , MicroRNAs/biosynthesis , rac1 GTP-Binding Protein/biosynthesis , Animals , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/physiology , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Spines/metabolism , GTPase-Activating Proteins/antagonists & inhibitors , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Organ Culture Techniques , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, Leptin/genetics , Synapses/physiology , Transcription, Genetic , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/biosynthesis
19.
J Neurosci ; 34(3): 717-25, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24431430

ABSTRACT

Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.


Subject(s)
Environmental Pollutants/toxicity , MicroRNAs/biosynthesis , Neurogenesis/physiology , Polychlorinated Biphenyls/toxicity , Ryanodine Receptor Calcium Release Channel/physiology , Synapses/physiology , Animals , Cells, Cultured , Coculture Techniques , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Female , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiology , Male , Neurogenesis/drug effects , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Spine/drug effects , Spine/physiology , Synapses/drug effects
20.
PLoS One ; 8(6): e64658, 2013.
Article in English | MEDLINE | ID: mdl-23762244

ABSTRACT

Neurotrophin-regulated gene expression is believed to play a key role in long-term changes in synaptic structure and the formation of dendritic spines. Brain-derived neurotrophic factor (BDNF) has been shown to induce increases in dendritic spine formation, and this process is thought to function in part by stimulating CREB-dependent transcriptional changes. To identify CREB-regulated genes linked to BDNF-induced synaptogenesis, we profiled transcriptional occupancy of CREB in hippocampal neurons. Interestingly, de novo motif analysis of hippocampal ChIP-Seq data identified a non-canonical CRE motif (TGGCG) that was enriched at CREB target regions and conferred CREB-responsiveness. Because cytoskeletal remodeling is an essential element of the formation of dendritic spines, within our screens we focused our attention on genes previously identified as inhibitors of RhoA GTPase. Bioinformatic analyses identified dozens of candidate CREB target genes known to regulate synaptic architecture and function. We showed that two of these, the RhoA inhibitors Par6C (Pard6A) and Rnd3 (RhoE), are BDNF-induced CREB-regulated genes. Interestingly, CREB occupied a cluster of non-canonical CRE motifs in the Rnd3 promoter region. Lastly, we show that BDNF-stimulated synaptogenesis requires the expression of Par6C and Rnd3, and that overexpression of either protein is sufficient to increase synaptogenesis. Thus, we propose that BDNF can regulate formation of functional synapses by increasing the expression of the RhoA inhibitors, Par6C and Rnd3. This study shows that genome-wide analyses of CREB target genes can facilitate the discovery of new regulators of synaptogenesis.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Carrier Proteins/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Dendritic Spines/genetics , Hippocampus/metabolism , Synapses/genetics , rho GTP-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Binding Sites , Brain-Derived Neurotrophic Factor/metabolism , Carrier Proteins/metabolism , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Spines/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genome-Wide Association Study , Hippocampus/cytology , Hippocampus/growth & development , Neurogenesis/genetics , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Synapses/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...