Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 151(5): 3116, 2022 05.
Article in English | MEDLINE | ID: mdl-35649891

ABSTRACT

Acoustics research involving human participants typically takes place in specialized laboratory settings. Listening studies, for example, may present controlled sounds using calibrated transducers in sound-attenuating or anechoic chambers. In contrast, remote testing takes place outside of the laboratory in everyday settings (e.g., participants' homes). Remote testing could provide greater access to participants, larger sample sizes, and opportunities to characterize performance in typical listening environments at the cost of reduced control of environmental conditions, less precise calibration, and inconsistency in attentional state and/or response behaviors from relatively smaller sample sizes and unintuitive experimental tasks. The Acoustical Society of America Technical Committee on Psychological and Physiological Acoustics launched the Task Force on Remote Testing (https://tcppasa.org/remotetesting/) in May 2020 with goals of surveying approaches and platforms available to support remote testing and identifying challenges and considerations for prospective investigators. The results of this task force survey were made available online in the form of a set of Wiki pages and summarized in this report. This report outlines the state-of-the-art of remote testing in auditory-related research as of August 2021, which is based on the Wiki and a literature search of papers published in this area since 2020, and provides three case studies to demonstrate feasibility during practice.


Subject(s)
Acoustics , Auditory Perception , Attention/physiology , Humans , Prospective Studies , Sound
2.
Vision Res ; 186: 103-111, 2021 09.
Article in English | MEDLINE | ID: mdl-34082396

ABSTRACT

When presented with locally paired dots moving in opposite directions, motion selective neurons in the middle temporal cortex (MT) reduce firing while neurons in V1 are unaffected. This physiological effect is known as motion opponency. The current study used psychophysics to investigate the neural circuit underlying motion opponency. We asked whether opposing motion signals could arrive from different eyes into the receptive field of a binocular neuron while still maintaining motion opponency. We took advantage of prior findings that orientation discrimination of the motion axis (along which paired dots oscillate) is harder when dots move counter-phase than in-phase, an effect associated with motion opponency. We found that such an effect disappeared when paired dots originated from different eyes. This suggests that motion opponency, at some point, involves strictly monocular processing. This does not mean that motion opponency is entirely monocular. Further, we found that the effect of a Glass pattern disappeared under similar viewing conditions, suggesting that Glass pattern perception also involves some strictly monocular processing.


Subject(s)
Motion Perception , Discrimination, Psychological , Humans , Motion , Psychophysics , Temporal Lobe , Vision, Binocular
SELECTION OF CITATIONS
SEARCH DETAIL
...