Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807287

ABSTRACT

The separation of benzene and cyclohexane is a challenging process in the petrochemical industry, mainly because of their close boiling points. Extractive separation of the benzene-cyclohexane mixture has been shown to be feasible, but it is important to find solvents with good extractive performance. In this work, 23 eutectic solvents (ESs) containing aromatic components were screened using the predictive COSMO-RS and their respective performance was compared with other solvents. The screening results were validated with experimental work in which the liquid-liquid equilibria of the three preselected ESs were studied with benzene and cyclohexane at 298.5 K and 101.325 kPa, with benzene concentrations in the feed ranging from 10 to 60 wt%. The performance of the ESs studied was compared with organic solvents, ionic liquids, and other ESs reported in the literature. This work demonstrates the potential for improved extractive separation of the benzene-cyclohexane mixture by using ESs with aromatic moieties.

2.
ACS Omega ; 6(34): 22317-22332, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34497921

ABSTRACT

Removal of nitrogen and sulfur compounds from diesel fuel is essential to comply with the increasing stringent regulations. The extraction capability of two deep eutectic solvents, namely, tetrabutylphosphoniumbromide/ethylene glycol, TBPBr/EG, with molar ratio 1:2, and tetrabutylammoniumbromide/ethylene glycol, TBABr/EG, with molar ratio 1:2, in simultaneously extracting basic nitrogen, nonbasic nitrogen, and sulfur compounds represented by pyridine, indoline, and dibenzothiophene (DBT) from n-hexadecane, was investigated. Two pseudo-ternary phase diagrams of (TBPBr/EG + (pyridine + indoline + DBT) + n-hexadecane) and (TBABr/EG + (pyridine + indoline + DBT) + n-hexadecane) were predicted via a conductor-like screening model for real solvents (COSMO-RS) and experimentally validated at 298.15 K and 1 atm. Both solvents showed zero cross-contamination, indicating the suitability of all solvents as extraction solvents. The tie lines obtained for both COSMO-RS and experiments were in agreement and had root-mean-square deviation (RMSD) values of less than 5% for both systems. Selectivity and distribution ratio calculated indicates the suitability of both solvents in extracting sulfur and nitrogen compounds from hexadecane. Two new parameters, namely, extraction efficiency, α, and extraction affinity, ß, were introduced to ease the performance comparison of both solvents. TBPBr/EG shows a slightly better performance than TBABr/EG. Other than that, the presence of multiple solutes shows low effects on the performance of these solvents.

3.
J Environ Manage ; 287: 112257, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33690013

ABSTRACT

The economic developments around the globe resulted in the increased demand of energy, which overburdened the supply chain sources of energy. Fossil fuel reserves are exploited to meet the high demand of energy and their combustion is becoming the main source of environmental pollution. So there is dire need to find safe, renewable and sustainable energy resources. Waste to energy (WtE) may be viewed as a possible alternate source of energy, which is economically and environmentally sustainable. Municipal solid waste (MSW) is a major contributor to the development of renewable energy and sustainable environment. At present the scarcity of renewable energy resources and disposal of MSW is a challenging problem for the developing countries, which has generated a wide ranging socioeconomic and environmental problems. This situation stimulates the researchers to develop alternatives for converting WtE under a variety of scenarios. Herein, the present scenario in developing the WtE technologies such as, thermal conversion methods (Incineration, Gasification, Pyrolysis, Torrefaction), Plasma technology, Biochemical methods, Chemical and Mechanical methods, Bio-electrochemical process, Mechanical biological treatment (MBT), Photo-biological processes for efficacious energy recovery and the challenges confronted by developing and developed countries. In this review, a framework for the evaluation of WtE technologies has been presented for the ease of researchers working in the field. Furthermore, this review concluded that WtE is a potential renewable energy source that will partially satisfy the demand for energy and ensure an efficient MSW management to overcome the environmental pollution.


Subject(s)
Refuse Disposal , Waste Management , Biomass , Incineration , Solid Waste , Technology
4.
Molecules ; 26(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375265

ABSTRACT

The release of certain gases to the atmosphere is controlled in many countries owing to their negative impact on the environment and human health. These gases include carbon dioxide (CO2), sulfur oxides (SOx), nitrogen oxides (NOx), hydrogen sulfide (H2S) and ammonia (NH3). Considering the major contribution of greenhouse gases to global warming and climate change, mitigation of these gases is one of the world's primary challenges. Nevertheless, the commercial processes used to capture these gases suffer from several drawbacks, including the use of volatile solvents, generation of hazardous byproducts, and high-energy demand. Research in green chemistry has resulted in the synthesis of potentially green solvents that are non-toxic, efficient, and environmentally friendly. Deep eutectic solvents (DESs) are novel solvents that upon wise choice of their constituents can be green and tunable with high biocompatibility, high degradability, and low cost. Consequently, the capture of toxic gases by DESs is promising and environmentally friendly and has attracted much attention during the last decade. Here, we review recent results on capture of these gases using different types of DESs. The effect of different parameters, such as chemical structure, molar ratio, temperature, and pressure, on capture efficiency is discussed.


Subject(s)
Atmosphere/chemistry , Gases/analysis , Solvents/chemistry , Carbon Dioxide/chemistry , Denitrification , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...