Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Mol Model ; 30(8): 271, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017741

ABSTRACT

CONTEXT: Density functional theory (DFT) calculations on the ground and the first excited state are performed on the modified and unmodified 4-(methoxyphenyl acetonitrile) monomer (referred to as MPA). The modified monomer named MFA is obtained by Knoevenagel condensation of MPA with dimethylformamide dimethyl acetal (DMF-DMA). DFT computations show that the chemical grafting of the dimethylamino group onto the MPA unit induces a great change in the geometric, electronic, and optical properties. Going from MPA to MFA monomer, a great change in the frontier orbitals of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the ground and the first excited state is observed. Consequently, a reduction in the energy gap HOMO-LUMO and an enhancement in the absorption and emission properties are observed under the chemical modification. The observed modifications in the electronics and optical properties are the result of the charge transfer appearing between the cyano (C≡N) acceptor group and the dimethylamino (DMF-DMA)-grafted group donor ring. METHODS: Quantum chemical calculations were performed in the ground and the first excited state using the density functional theory (DFT), and it extends the time-dependent density functional theory (TD-DFT), implemented in the Gaussian 09 software package. The ground state is obtained by optimization of the studied molecular geometries by employing the DFT/M062X/6-31G(d,p) level of theory. The first excited state is obtained by re-optimization of the ground state geometries using the TD-DFT/M062X/6-31G(d,p) level of theory. The contour plots of the frontier orbitals and the molecular electrostatic potential (MEP) maps are obtained from the ground and the first excited state, optimized geometries, and drawn using Gaussview software.

2.
J Mol Graph Model ; 127: 108691, 2024 03.
Article in English | MEDLINE | ID: mdl-38086144

ABSTRACT

Dye-sensitized solar cells (DSSCs) are promising third-generation photovoltaic cell technology owing to their easy fabrication, flexibility and better performance under diffuse light conditions. Natural pigment sensitizers are abundantly available and environmentally friendliness. However, narrow absorption spectra of natural pigments result in low efficiencies of the DSSCs. Therefore, combining two or more pigments with complementary absorption spectra is considered an appropriate method to broaden the absorption band and boost efficiency. This study reports three complex molecules: brazilin-betanidin-oxane (Braz-Bd-oxane), brazilin-betanidin-ether (Braz-Bd-ether) and brazilein-betanidin-ether (Braze-Bd-ether), obtained from the etherification and bi-etherification reactions of brazilin dye and brazilein dye with betanidin dye. The equilibrium geometrical structure properties, frontier molecular orbital, electrostatic surface potential, reorganization energy, chemical reactivities, and non-linear optical properties of the studied dyes were investigated using density functional theory (DFT)/B3LYP methods, with 6-31+G(d,p) basis sets and LANL2DZ for light atom and heavy atoms respectively. The optical-electronic properties were calculated using TD-DFT/B3LYP/6-31+G(d,p) for isolated dye and TD-DFT/CAM-B3LYP/6-31G(d,p)/LANL2DZ for dyes@(TiO2)9H4. The results reveal that spectra for Braz-Bd-oxane and Braze-Bd-ether complexes red-shifted compared to the individually selected dyes. The simulated absorption spectra of the adsorbed dyes on (TiO2)9H4 are red-shifted compared to the free dye. Moreover, Braz-Bd-oxane and Braz-Bd-ether exhibit better charge transfer and photovoltaic properties than the selected natural dyes forming these complexes. Based on the dyes' optoelectronic properties and photovoltaic properties, the designed molecules Braz-Bd-oxane and Braze-Bd-ether are considered better candidates to be used as photosensitizers in dye solar cells.


Subject(s)
Benzopyrans , Coloring Agents , Indenes , Solar Energy , Models, Molecular , Coloring Agents/chemistry , Betacyanins , Density Functional Theory , Ethers
3.
Struct Chem ; : 1-19, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37363043

ABSTRACT

Favipiravir (FAV) (6-fluoro-3-oxo-3,4-dihydropyrazine-2-carboxamide) is one of the most effective antiviral drugs which is cited for action against RNA-viral infections of COVID-19. In this study, density functional theory (DFT) calculations were used to investigate three nanotubes (NTs) with FAV drug as delivery systems. The encapsulated systems (ESs) consist of FAV drug inside carbon-carbon, aluminum nitride, and boron nitride. At B3LYP-D/6-31G(d,p) and CPCM/B3LYP-D/6-31G(d,p), the optimization of NTs, FAV, and its tautomeric forms and six ESs was investigated in gas and water environments. Five tautomeric forms of FAV were investigated, two keto forms (K1 and K2) and three enol forms (E1, E2, and E3). The results revealed that E3 and K2 isomeric forms represented the most stable structures in both media; thus, these two forms were encapsulated into the NTs. The stability and the synthesis feasibility of NTs have been proven by calculating their interaction energies. Non-covalent interactions (NCIs) were investigated in the ESs to show the type of NCI with the molecular voids. The binding energies, thermochemical parameters, and recovery times were investigated to understand the mechanism of FAV encapsulation and release. The encapsulated AlNNT systems are more favorable than those of BNNTs and CNTs in gas and aqueous environments with much higher binding energies. The quantum theory of atoms in molecules (QTAIM) and recovery time analysis revealed the easier releasing of E3 from AlNNT over K2 form. Based on molecular docking simulations, we found that E3 and K2 FAV forms showed a high level of resistance to SARS-CoV-6M3M/6LU7/6W9C proteases. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-023-02182-4.

4.
Polymers (Basel) ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37112114

ABSTRACT

In this work, a tetrafunctional epoxy resin entitled 2,3,4,5-tetraglycidyloxy pentanal (TGP) was tested and investigated as a potential corrosion inhibitor for mild steel (MS) in 0.5 M H2SO4 solution. The corrosion inhibition process for mild steel was employed alongside various techniques, such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), temperature effect (TE), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and theoretical approaches (DFT, MC, RDF and MD). Further, the corrosion efficacies obtained at the optimum concentration (10-3 M of the TGP) were 85.5% (EIS) and 88.6% (PDP), respectively. The PDP results indicated that the TGP tetrafunctional epoxy resin acted the same as an anodic inhibitor type in 0.5 M H2SO4 solution. SEM and EDS analyses found that the protective layer formed on the MS electrode surface in the presence of TGP could prevent the attack of the sulfur ions. The DFT calculation provided more information regarding the reactivity, geometric properties and the active centers of the corrosion inhibitory efficiency of the tested epoxy resin. RDF, MC and MD simulations showed that the investigated inhibitory resin have a maximum inhibition efficiency in 0.5 M H2SO4 solution.

5.
J Mol Model ; 29(4): 86, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36872384

ABSTRACT

CONTEXT: Comparatively, metal-free sensitizers featuring the chalcogen family receive less attention despite known electronic properties for metal-chalcogenide materials. This work reports an array of optoelectronic properties using quantum chemical methods. Observed red-shifted bands within the UV/Vis to NIR regions with absorption maxima > 500 nm were consistent with increasing chalcogenide size. There is a monotonic down-shift in the LUMO and ESOP energy consistent with O 2p, S 3p, Se 4p, to Te 5p atomic orbital energies. Excited-state lifetime and charge injection free energies follow the decreasing order of chalcogenide electronegativity. Adsorption energies of dyes on TiO2 anatase (101) range between - 0.08 and - 0.77 eV. Based on evaluated properties, selenium- and tellurium-based materials show potential use in DSSCs and futuristic device applications. Therefore, this work motivates continued investigation of the chalcogenide sensitizers and their application. METHODS: The geometry optimization was performed at B3LYP/6-31 + G(d,p) and B3LYP/LANL2DZ level of theory for lighter and heavier atoms, respectively, using Gaussian 09. The equilibrium geometries were confirmed by the absence of imaginary frequencies. Electronic spectra were obtained at CAM-B3LYP/6-31G + (d,p)/LANL2DZ level of theory. Adsorption energies for dyes on a 4 × 5 supercell TiO2 anatase (101) were obtained using VASP. The dye-TiO2 optimizations were employed using GGA and PBE with the PAW pseudo-potentials. The energy cutoff was set at 400 eV and convergence threshold for self-consistent iteration was set to 10-4, and van der Waals were accounted using DFT-D3 model and on-site Coulomb repulsion potential set at 8.5 eV for Ti.

6.
J Mol Graph Model ; 121: 108427, 2023 06.
Article in English | MEDLINE | ID: mdl-36801586

ABSTRACT

A photosensitizer plays a vital role in adjusting the optical and electrochemical properties that affect the performance of dye-sensitized solar cells (DSSCs). Therefore, it should meet critical requirements for efficient operation of DSSCs. This study proposes catechin, a natural compound, as a photosensitizer and modifies its properties through hybridization with graphene quantum dots (GQDs). Density functional theory (DFT) and time-dependent DFT methods were used to investigate the geometrical, optical, and electronic properties. Twelve nanocomposites of catechin attached to carboxylated/uncarboxylated GQD were designed. The GQD was further doped with central/terminal boron atom or decorated with boron groups (organo-borane, borinic, and boronic groups). The available experimental data of parent catechin was used to validate the elected functional and basis set. Through hybridization, the energy gap of catechin was significantly narrowed by 50.66-61.48%. Therefore, its absorption was shifted from the UV to the visible region which matches the solar spectrum. Also, increasing the absorption intensity led to high light-harvesting efficiency close to unity that can increase current generation. The energy levels of designed dye nanocomposites are appropriately aligned with the conduction band and redox potential, indicating the feasibility of electron injection and regeneration. The observed properties confirm that the reported materials exhibit characteristics of interest thus they could be promising candidates for applications in DSSCs.


Subject(s)
Catechin , Graphite , Quantum Dots , Quantum Dots/chemistry , Coloring Agents/chemistry , Density Functional Theory , Graphite/chemistry , Boron/chemistry , Photosensitizing Agents
7.
Sci Rep ; 12(1): 17798, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273019

ABSTRACT

Geometries of the 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine azo-dye compound and its tautomer were optimized using B3LYP and M06-2X functionals in coupling with TZVP and 6-311 + G(d,p) basis sets. The 1H- and 13C-NMR chemical shifts of all species were predicted using 13 density functional theory (DFT) approaches in coupling with TZVP and 6-311 + G(d,p) basis sets at the different optimized geometries by applying the using GIAO method using the eight geometries. The selected functionals are characterized by having different amount of Hartree-Fock exchange. The selected DFT methods were B3LYP, M06-2X, BP86, B97XD, TPSSTPSS, PBE1PBE, CAM-B3LYP, wB97XD, LSDA, HSEH1PBE, PW91PW91, LC-WPBE, and B3PW91. The results obtained were compared with the available experimental data using different statistical descriptors such as root mean square error (RMSE) and maximum absolute error (MAE). Results revealed that the prediction of the 1H-NMR chemical shifts has more significant dependence on the applied geometry than that of the prediction of the 13C-NMR chemical shifts. Among all the examined functionals, B97D and TPSSTPSS functionals were found to be the most accurate ones, while the M06-2X functional is the least accurate one. Results also revealed that the prediction of NMR chemical shifts using TZVP basis sets results is more accurate results than 6-311 + G(2d,p) basis set.


Subject(s)
Magnetic Resonance Imaging , Density Functional Theory , Models, Molecular , Magnetic Resonance Spectroscopy/methods
8.
ACS Omega ; 6(13): 8967-8975, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33842767

ABSTRACT

The power conversion efficiency (η) is the most important key to determine the efficiency of dye-sensitized solar cell (DSSC) devices. However, the calculation of η theoretically is a challenging issue since it depends on a large number of experimental and theoretical parameters with extensive related data. In this work, η was successfully predicted using the improved normal model with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for eight diphenylthienylamine-based (DP-based) dyes with various π-bridge adsorbed on titanium dioxide. The titanium dioxide is represented by a nanotube surface (TiO2NT); this surface is rarely investigated in the literature. The π-linker consists of five (DP1)- or six (DP2)-membered rings and contains none to three nitrogen atoms (D0-D3). The reliability of the estimated values was confirmed by the excellent agreement with those available for the two experimentally tested ones (DP2-D0 and DP2-D2). The deviations between the experimental and estimated values were in the ranges of 0.03 to 0.06 mA cm-2, 0.05 to 0.3 mV, and 0.37 to 0.18% for short-circuits current density (J sc), open-circuit voltage (V oc), power conversion efficiency (%η), respectively. More importantly, the results revealed that using pyridine (DP2-D1), pyrimidine (DP2-D2), and 1,2,4-triazine (DP2-D3) improves the power conversion efficiencies in the range of 6.03 to 6.90%. However, the cyclopenta-1,3-diene (DP1-D0) shows superior performance with a predicted η value that reaches 9.55%.

9.
J Comput Chem ; 42(16): 1106-1117, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33871092

ABSTRACT

This study presents the benchmark calculations of proton affinities (PAs) and gas-phase basicities (GBs) of 8-para substituted benzaldehyde compounds using the multilevel model chemistries (G3B3 and G4), density-functional quantum model (B3LYP) and ab initio model (MP2). The results show that the computed properties are strongly correlated with the available experimental data. The PAs and the GBs of other eight para-substituted benzaldehyde compounds, for which the experimental data does not currently exist, have been calculated using G3B3 and B3LYP methods. The correlations between the experimental PAs and GBs with the computed properties such as PA, GB, chemical properties (bond lengths, electron density and δ1 H NMR chemical shift) of the investigated benzaldehydes have been studied and statistically analyzed. The influence of the substituted groups has been discussed in terms of inductive effect and electron donating and electron withdrawing effect. The results obtained show that the chemical properties of the benzaldehyde compounds are controlled by the strong coupling between the CHO group and the nature of the para-substituent groups through the benzene ring as a conducting linkage.

10.
J Mol Graph Model ; 104: 107833, 2021 05.
Article in English | MEDLINE | ID: mdl-33444981

ABSTRACT

Dye aggregation causes poor performance of dye-sensitized solar cell (DSSC) applications through faster charge recombination of the photosensitizer with electrolyte. Triphenylamine (TBA)-based dyes feature a higher molar absorption coefficient and broadened wavelength but cannot absorb sunlight in the near-infrared (NIR) region. In contrast, the squaraine (SQ) photosensitizer, which is also called an NIR photosensitizer, has a maximum wavelength in the NIR region with high intensity. However, SQ dye suffers from dye aggregation due to its planar structure. The use of a co-sensitizer is one well-tested way to increase the power conversion efficiency (η) of solar cells by reducing dye aggregation and charge recombination. Using density functional theory (DFT) and time-dependent DFT (TDDFT), this work explains from a theoretical perspective the higher η values of the TZC1 and TZC2 dyes compared to that of asymmetric the SQ sensitizer (YR6) as free dyes. The electronic properties, reorganization energies, absorption and emission spectra, ICT parameters, and photovoltage parameters of the TZC1, TZC2, and YR6 dyes were computed using the M06/6-31G(d,p) level of theory in the gas phase and CH2Cl2 solvent (CPCM method). Additionally, the mono- and co-adsorption processes of TZC-based sensitizers with YR6 on the anatase (001) surface were investigated using periodic DFT calculations with the PBE + U/PAW method and the dispersion correction of the Grimme method D3. The results reveal that the use of the co-sensitized led to significant stabilization of the formed complexes by at least 1.21 eV, the panchromatic effect on the absorption spectra, and an increase in the light-harvesting ability in the NIR region, which improves the performance of DSSCs.


Subject(s)
Coloring Agents , Solar Energy , Cyclobutanes , Density Functional Theory , Models, Molecular , Phenols , Sunlight , Titanium
11.
J Mol Model ; 26(10): 288, 2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32980906

ABSTRACT

Optoelectronic properties of triphenylamine dyes arising from the embedded five-membered π-linkers C4H4X (X = O, NH, S, Se, Te) and varying anchoring groups, cyanoacrylic acid and hydantoin, in D-π-π-A model are examined. The reported properties for both, isolated dyes and dye@TiO2 complexes, are realized through density functional theory (DFT) and time-dependent DFT. The study reveals that chalcogen doping (X = S, Se, Te) enhances absorption and fluorescent emission spectra in the visible and NIR regions. The adsorption of the dyes on the TiO2 cluster has been simulated. Alteration of the UV-Vis spectra and electron density redistribution for the complexes from individual dyes are examined and analyzed. The binding energies relate to the nature of the heteroatoms X; the complexes dye@TiO2 with heavier heteroatoms Se and Te demonstrate stronger binding. Graphical abstract.

12.
ACS Omega ; 5(7): 3151-3164, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32118131

ABSTRACT

Herein, two bifunctional macromolecular aromatic epoxy resins (ERs), namely, 4,4'-isopropylidenediphenol oxirane (ERH) and 4,4'-isopropylidene tetrabromodiphenol oxirane (ERBr), are synthesized, characterized, and evaluated as anticorrosive materials for carbon steel corrosion in acidic medium. ERs were characterized using proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy techniques. Investigated ERs acted as effective corrosion inhibitors, and their inhibition effectiveness followed the order ERBr (96.5%) > ERH (95.6%). Potentiodynamic polarization results showed that ERH and ERBr behave as predominantly anodic type and the cathodic type of corrosion inhibitors, respectively. Adsorption of both the studied ERH and ERBr molecules obeyed the Langmuir adsorption isotherm model. Density functional theory and molecular dynamics studies showed that protonated forms of ERH and ERBr contribute more to metal (carbon steel)-inhibitor (ERH/ERBr) interactions than their neutral forms.

13.
J Mol Model ; 25(9): 265, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31444705

ABSTRACT

In this paper, the possible interactions between 5-fluorouracil (5FU) as an anticancer drug and gallium nitride (Ga12N12) nanocage (NC) in aqueous solution have been investigated using DFT/CPCM/B3LYP-D/6-31G(d,p) level of theory. Eleven different orientations were used to mimic the 5FU adsorbed on Ga12N12 (5FU@GaNNC). To investigate the interaction mechanism between the two components, the adsorption energies and thermodynamic parameters, the electronic properties such as the energies and orbitals distribution of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), the HOMO-LUMO energy gaps (Eg), the density of states (DOS), partial DOS (PDOS), and the molecular electrostatic potential (MEP) have been calculated and compared. The natural bond orbitals (NBOs) and the quantum theory of atoms in molecules (QTAIM) calculations have been applied for understanding chemical interactions and chemical bonding. Additionally, some quantum molecular descriptors were calculated for the understanding of molecular reactivity. Main results revealed that (1) the key factor that leads to stabilization of the formed complex/s is the relocation of one of the H atoms that originally belonging to one of the N atoms in 5FU to one of the nearest Ga atoms in GaNNC and (2) the adsorption energies for the eleven adsorbed systems are relatively larger compared with reported similar systems indicating from a theoretical point of view, a probable chemisorption type of adsorption and the privilege of GaNNC as a carrier for 5FU drug. Graphical abstract Simulation of the most stable adsorbed system of 5-fluorouracil anticancer drug on Gallium nitride nanocage.


Subject(s)
Drug Delivery Systems , Fluorouracil/administration & dosage , Gallium/chemistry , Models, Molecular , Nanostructures/chemistry , Antineoplastic Agents/administration & dosage , Fluorouracil/chemistry , Quantum Theory , Static Electricity , Thermodynamics
14.
Sci Rep ; 9(1): 11715, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31406200

ABSTRACT

Present study is designed for the synthesis, characterization and corrosion inhibition behavior of two diamine aromatic epoxy pre-polymers (DAEPs) namely, N1,N1,N2,N2-tetrakis (oxiran-2-ylmethyl) benzene-1,2-diamine (DAEP1) and 4-methyl-N1,N1,N2,N2-tetrakis (oxiran-2-ylmethyl) benzene-1,2-diamine (DAEP2) for carbon steel corrosion in acidic medium. Synthesized DAEPs were characterized using spectral (Nuclear magnetic resonance (1H NMR) and Fourier transform infrared-attenuated total reflection (FTIR-ATR)) techniques. Viscosity studies carried out at four different temperatures (20-80 °C) increase in temperature causes significant reduction in their viscosities. The anticorrosive properties of DAEPs differing in the nature of substituents, for carbon steel corrosion in 1 M HCl solution was evaluated using several experimental and computational techniques. Both experimental and computational studies showed that inhibitor (DAEP2) that contains electron releasing methyl (-CH3) showed higher protectiveness as compared to the inhibitor (DAEP1) without substituent (-H). Electrochemical results demonstrate that DAEPs act as reasonably good inhibitors for carbon steel in 1 M HCl medium and their effectiveness followed the sequence: DAEP2 (92.9%) > DAEP1 (91.7%). The PDP results show that the diamine aromatic epoxy pre-polymers molecules (DAEPs) act as mixed type inhibitors. Electrochemical study was also supported using scanning electron microscopy (SEM) method were significant improvement in the surface morphology of inhibited (by DAEPs) metallic specimens was obtained. Results derived from computational density functional theory (DFT) and molecular dynamics (MD) simulationsand studies were consistent with the experimental results derived from SEM, EIS and PDP electrochemical studies. Adsorption of the DAEPs obeyed the Langmuir adsorption isotherm model.

15.
Heliyon ; 5(3): e01340, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30923769

ABSTRACT

The corrosion inhibition performance of Hexa (3-methoxy propan-1,2 diol) cyclotriphosphazene (HMC) on carbon steel in 3% NaCl solution was investigated by weight loss (WL), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) measurements, Density functional theory (DFT) and Monte Carlo (MC) simulation. The corrosion inhibition efficiency at optimum concentration (10-3M) is 99% of HMC at 298 K. The corrosion inhibition efficiency at 10-3 M decreases with increase in temperature. The adsorption of HMC on the surface of carbon steel obeyed Langmuir isotherm. Potentiodynamic polarization study confirmed that inhibitor anodic-type. DFT and Monte Carlo (MC) simulations based computational approaches were under taken to support the experimental findings. DFT studies revealed that HMC interact with metallic surface through donor-acceptor interactions in which the anionic parts act as electron donor (HOMO) and cationic parts behaved as electron acceptor (LUMO). The MC simulations study showed that studied HMC adsorb spontaneously on Fe (110) surface.

16.
RSC Adv ; 9(26): 14782-14796, 2019 May 09.
Article in English | MEDLINE | ID: mdl-35516296

ABSTRACT

Herein, the synthesis, characterization and corrosion inhibition effectiveness of two aromatic epoxy monomers (AEMs) namely, 2-(oxiran-2-yl-methoxy)-N,N-bis(oxiran-2-yl-methyl)aniline (AEM1) and N,N-bis(oxiran-2-ylmethyl)-2-((oxiran-2-ylmethyl) thio)aniline (AEM2), in carbon steel corrosive dissolution in 1 M HCl solution is investigated using computational and experimental techniques. AEM1 and AEM2 were characterized using FT-IR, 1H NMR and 13C NMR spectroscopy techniques. Electrochemical results demonstrated that AEMs act as reasonably good corrosion inhibitors for carbon steel in 1 M HCl medium and their effectiveness followed the sequence: AEM2 (95.4%) > AEM1 (94.3%). A PDP study showed that AEMs act as mixed-type inhibitors with slight anodic predominance. Adsorption of the AEMs obeyed the Langmuir isotherm model. Interactions between AEMs and the metallic surface was further studied using DFT and MD simulations that give several computational parameters such as I, A, E HOMO, E LUMO, ΔE, δ, χ, ρ, σ, η, ΔN and E ads. The experimental and computational results were in good agreement and well complimented each other.

17.
RSC Adv ; 9(8): 4454-4462, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-35520175

ABSTRACT

A new epoxy monomer, namely, tetraglycidyl-1,2-aminobenzamide (ER), was synthesized by condensation of the amines with epichlorohydrin in a basic medium. The obtained epoxy monomer was characterized by FT-IR and 1H NMR spectroscopy. Rheological properties of this monomer were determined using an advanced rheometer. Subsequently, the synthesized ER monomer was investigated as corrosion inhibitor for carbon steel in 1 M HCl solution. The adsorption properties of ER were analyzed by electrochemical, surface investigation and theoretical computational studies using DFT and molecular dynamics (MD). Results showed a high dependence of the viscosity of ER on temperature and concentration, and also, that ER has better inhibition performance. A good agreement between the results derived from computational (MD and DFT) and experimental methods was observed. The thermodynamic parameters, along with the kinetic parameters, showed that the adsorption of ER molecules onto carbon steel surface obeyed the Langmuir isotherm model, and the adsorption at metal-electrolyte interfaces involved both chemical and physical adsorption, but predominantly chemisorption mechanism.

18.
J Phys Chem A ; 118(50): 11787-96, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25489794

ABSTRACT

The hyperpolarizabilities of five prototypical and four recently synthesized long-range charge-transfer (CT) organic compounds are calculated using short- and middle-range (SR and MR) hybrid functionals. These results are compared with data from MP2 and other DFT methods including GGAs, global hybrids, long-range corrected functionals (LC-DFT), and optimally tuned LC-DFT. Although it is commonly believed that the overestimation of hyperpolarizabilities associated with CT excitations by GGA and global hybrid functionals is the result of their wrong asymptotic exchange potential, and that LC-DFT heals this issue, we show here that SR and MR functionals yield results similar to those from LC-DFT. Hence, the long-range correction per se does not appear to be the key element in the well-known improved description of hyperpolarizabilities by LC-DFT. Rather, we argue that the inclusion of substantial amounts of Hartree-Fock exchange, which reduces the many-electron self-interaction error, is responsible for the relatively good results afforded by range separated hybrids. Additionally, we evaluate the effects of solvent and frequency on hyperpolarizabilities computed by SR and MR hybrids and compare these predictions with other DFT methods and available experimental data.

19.
Photochem Photobiol Sci ; 9(7): 968-74, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20498866

ABSTRACT

In a combined experimental and computational study of a group of para-substituted azobenzenes, the effects of substituents and solvent on the kinetics of thermal cis-to-trans isomerisation have been examined and the success of DFT calculations in predicting kinetic parameters assessed. Mono-substituted species are predicted to isomerise by inversion in both non-polar and polar solvent, whereas for push-pull azobenzenes the mechanism is predicted to change from inversion to rotation on going from non-polar to polar solvent. Computed free energies of activation qualitatively reproduce experimental trends but do not quantitatively predict the kinetics of cis-trans isomerisation. The polarisable continuum model of solvation fails to predict the experimentally observed influence of solvent on the entropy of activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...