Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 103(2): 231-235, 2023 02.
Article in English | MEDLINE | ID: mdl-36196035

ABSTRACT

NTHL1-associated tumor syndrome (NATS) is an autosomal recessive condition characterized by an increased risk for colorectal polyposis and colorectal cancer (CRC). Only 46 case reports have been previously published. In a retrospective review, we analyzed the clinical histories of six patients found to have NATS after genetic counseling and testing. NATS appears to be associated with an increased risk for colorectal polyposis, CRC, female breast cancer, meningiomas, and endometrial cancer. Although research is limited, prior publications have reported a multi-tumor predisposition for individuals with biallelic pathogenic or likely pathogenic variants in NTHL1. Additional data are necessary to further define the cancer risks so affected individuals can be appropriately managed.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Deoxyribonuclease (Pyrimidine Dimer) , Female , Humans , Adenomatous Polyposis Coli/diagnosis , Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Genetic Predisposition to Disease , Breast Neoplasms/genetics , Meningioma/genetics , Endometrial Neoplasms/genetics
2.
Reproduction ; 163(2): 69-83, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34904570

ABSTRACT

Defects in spermatogenesis are an important cause of male infertility. Multiple aspects of spermatogenesis are controlled by chromatin remodellers, including regulating transcription. We previously described mutations in chromatin remodelling gene Cecr2 that resulted in the lethal neural tube defect exencephaly in most mutant mice and subfertility in mice that were non-penetrant for exencephaly. Here, we show that the severity of male subfertility is dependent on age. Cecr2GT/Del males contain two mutant alleles, one of which is hypomorphic and therefore produces a small amount of protein. These males sire the fewest pups just after sexual maturity (88% fewer than Cecr2+/+ at P42-60) but improve with age (49% fewer than Cecr2+/+ at P81-100), although never completely recovering to Cecr2+/+(wild type) levels. When young, they also have defects in testis histology, in vivo fertilization frequency, sperm number and motility, and testis weight that show similar improvement with age. Immunostaining of staged seminiferous tubules showed CECR2 in type A, intermediate and B spermatogonia, and less in preleptotene and leptotene spermatocytes. Histological defects were first apparent in Cecr2GT/Del testes at P24, and RNA-seq analysis revealed 387 differentially expressed genes. This included 66 genes on the X chromosome (almost double the number on any other chromosome), all more highly expressed in Cecr2GT/Del testes. This inappropriate expression of X chromosome genes could be caused by a failure of effective meiotic sex chromosome inactivation. We identify several abnormally expressed genes that may contribute to defects in spermatogenesis at P24. Our results support a role for Cecr2 in juvenile spermatogenesis.


Subject(s)
Chromatin , Infertility, Male , Spermatogenesis , Transcription Factors , Animals , Chromatin Assembly and Disassembly , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Spermatogenesis/genetics , Testis/metabolism , Transcription Factors/metabolism
3.
Biol Reprod ; 104(4): 835-849, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33354716

ABSTRACT

Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the peri-implantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.


Subject(s)
Embryo Implantation/genetics , Embryo Loss/genetics , Infertility, Female/genetics , Transcription Factors/genetics , Animals , Embryo, Mammalian , Female , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mutation , Pregnancy , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...