Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 4: 54, 2017.
Article in English | MEDLINE | ID: mdl-28824920

ABSTRACT

Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.

2.
Biochemistry ; 56(15): 2071-2075, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28379007

ABSTRACT

Recent Hsp104 structural studies have reported both planar and helical models of the hexameric structure. The conformation of Hsp104 monomers within the hexamer is affected by nucleotide ligation. After nucleotide-driven hexamer formation, Hsp104-catalyzed disruption of protein aggregates requires binding to the peptide substrate. Here, we examine the oligomeric state of Hsp104 and its peptide binding competency in the absence of nucleotide and in the presence of ADP, ATPγS, AMPPNP, or AMPPCP. Surprisingly, we found that only ATPγS facilitates avid peptide binding by Hsp104. We propose that the modulation between high- and low-peptide affinity states observed with these ATP analogues is an important component of the disaggregation mechanism of Hsp104.


Subject(s)
Heat-Shock Proteins/metabolism , Peptides/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Protein Binding
3.
Biochem J ; 470(1): 39-52, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26251445

ABSTRACT

Escherichia coli caseinolytic protease (Clp)B is a hexameric AAA+ [expanded superfamily of AAA (ATPase associated with various cellular activities)] enzyme that has the unique ability to catalyse protein disaggregation. Such enzymes are essential for proteome maintenance. Based on structural comparisons to homologous enzymes involved in ATP-dependent proteolysis and clever protein engineering strategies, it has been reported that ClpB translocates polypeptide through its axial channel. Using single-turnover fluorescence and anisotropy experiments we show that ClpB is a non-processive polypeptide translocase that catalyses disaggregation by taking one or two translocation steps followed by rapid dissociation. Using single-turnover FRET experiments we show that ClpB containing the IGL loop from ClpA does not translocate substrate through its axial channel and into ClpP for proteolytic degradation. Rather, ClpB containing the IGL loop dysregulates ClpP leading to non-specific proteolysis reminiscent of ADEP (acyldepsipeptide) dysregulation. Our results support a molecular mechanism where ClpB catalyses protein disaggregation by tugging and releasing exposed tails or loops.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence , Bacterial Translocation/physiology , Endopeptidase Clp , Escherichia coli Proteins/genetics , Heat-Shock Proteins/genetics , Molecular Sequence Data , Peptides/genetics , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...