Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Avian Dis ; 65(2): 219-226, 2021 06.
Article in English | MEDLINE | ID: mdl-34412451

ABSTRACT

Movement and land application of manure is a known risk factor for secondary spread of avian influenza viruses. During an outbreak of highly pathogenic avian influenza (HPAI), movement of untreated (i.e., fresh) manure from premises known to be infected is prohibited. However, moving manure from apparently healthy (i.e., clinically normal) flocks may be critical, because some egg-layer facilities have limited on-site storage capacity. The objective of this analysis was to evaluate targeted dead-bird active surveillance real-time reverse transcriptase polymerase chain reaction (rRT-PCR) testing protocols that could be used for the managed movement of manure from apparently healthy egg-layer flocks located in an HPAI control area. We also evaluated sequestration, which is the removal of manure from any contact with chickens, or with manure from other flocks, for a period of time, while the flock of origin is actively monitored for the presence of HPAI virus. We used stochastic simulation models to predict the chances of moving a load of contaminated manure, and the quantity of HPAI virus in an 8 metric ton (8000 kg) load of manure moved, before HPAI infection could be detected in the flock. We show that the likelihood of moving contaminated manure decreases as the length of the sequestration period increases from 3 to 10 days (e.g., for a typical contact rate, with a sample pool size of 11 swabs, the likelihood decreased from 48% to <1%). The total quantity of feces from HPAI-infectious birds in a manure load moved also decreases. Results also indicate that active surveillance protocols using 11 swabs per pool result in a lower likelihood of moving contaminated manure relative to protocols using five swabs per pool. Simulation model results from this study are useful to inform further risk evaluation of HPAI spread through pathways associated with manure movement and further evaluation of biosecurity measures intended to reduce those risks.


Artículo regular­Estrategias de vigilancia y aislamiento para reducir la probabilidad de transportar gallinaza de aves de postura contaminada con virus de influenza aviar altamente patógeno. El movimiento y la aplicación de gallinaza a la tierra es un factor de riesgo conocido para la propagación secundaria de los virus de la influenza aviar (IA). Durante un brote de influenza aviar altamente patógena (IAAP), se prohíbe el movimiento de gallinaza sin tratar (es decir, fresco) de las instalaciones que se conoce que están infectadas. Sin embargo, el traslado de gallinaza de parvadas aparentemente sanas (es decir, clínicamente normales) puede ser fundamental, porque algunas instalaciones de producción de huevo tienen una capacidad limitada de almacenamiento en el lugar. El objetivo de este análisis estaba evaluar los protocolos de la prueba de transcriptasa reversa y reacción en cadena de la polimerasa en tiempo real (rRT-PCR) utilizados en la vigilancia activa dirigida a aves muertas, que podrían usarse para el movimiento controlado de gallinaza de parvadas de postura aparentemente sanas ubicadas en un área de control para influenza aviar de alta patogenicidad. También se evaluó el aislamiento, que es la remoción de gallinaza y prevenir cualquier contacto con pollos, o con gallinaza de otras parvadas, durante un período de tiempo, mientras que la parvada de origen es monitoreada activamente para detectar la presencia del virus de la influenza aviar altamente patógeno. Se utilizaron modelos de simulación estocástica para predecir las posibilidades de trasladar una carga de estiércol contaminado y la cantidad de virus de la influenza aviar altamente patógeno en una carga de ocho toneladas métricas (8000 kg) de gallinaza trasladada, antes de que se pudiera detectar la infección por influenza aviar altamente patógena en la parvada. Se demostró que la probabilidad de mover gallinaza contaminada disminuye a medida que la duración del período de aislamiento aumenta de tres a diez días (por ejemplo, para una tasa de contacto típica, con un tamaño de muestra de 11 hisopos, la probabilidad disminuyó de 48% a <1 %). La cantidad total de heces de aves infectadas por la influenza aviar altamente patógena en una carga de gallinaza transportada también disminuye. Los resultados también indican que los protocolos de vigilancia activa que utilizan 11 hisopos como muestra agrupada dan como resultado una menor probabilidad de mover gallinaza contaminada en comparación con los protocolos que utilizan cinco hisopos por muestra agrupada. Los resultados del modelo de simulación de este estudio son útiles para una evaluación adicional del riesgo de la propagación de la influenza aviar altamente patógena a través de vías asociadas con el movimiento de gallinaza y una evaluación adicional de las medidas de bioseguridad destinadas a reducir esos riesgos.


Subject(s)
Chickens/virology , Influenza A virus/pathogenicity , Influenza in Birds/transmission , Manure/virology , Medical Waste Disposal/methods , Animals , Computer Simulation , Influenza A virus/isolation & purification , Influenza in Birds/prevention & control , Medical Waste Disposal/standards , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Stochastic Processes
2.
Avian Dis ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33647945

ABSTRACT

Movement and land application of manure is a known risk factor for secondary spread of avian influenza (AI) viruses. During an outbreak of highly pathogenic avian influenza (HPAI), movement of untreated (i.e., fresh) manure from premises known to be infected would be prohibited. However, moving manure from apparently healthy (i.e., clinically normal) flocks may become critical, because some egg-layer facilities have limited on-site storage capacity. The objective of this analysis was to evaluate targeted dead-bird active surveillance rRT-PCR (real-time reverse transcriptase polymerase chain reaction) testing protocols that could be used for the managed movement of manure from apparently healthy egg-layer flocks located in a HPAI Control Area. We also evaluated sequestration, which is the removal of manure from any contact with chickens, or with manure from other flocks, for a period of time, while the flock of origin is actively monitored for the presence of HPAI virus. We used stochastic simulation models to predict the chances of moving a load of contaminated manure, and the quantity of HPAI virus in an 8 metric ton (8000 kg) load of manure moved, before HPAI infection would be detected in the flock. We show that the likelihood of moving contaminated manure would decrease as the length of the sequestration period increased from 3 to 10 days (e.g., for a typical contact rate, with a sample pool size of 11 swabs, the likelihood decreased from 48% to <1%). The total quantity of feces from HPAI infectious birds in a manure load moved would also decrease. Results also indicate that active surveillance protocols using 11 swabs per-pool result in a lower likelihood of moving contaminated manure relative to protocols using 5 swabs per pool. Simulation model results from this study are useful to inform further risk evaluation of HPAI spread through pathways associated with the manure movement, and further evaluation of biosecurity measures intended to reduce those risks.

3.
Avian Dis ; 63(sp1): 249-256, 2019 03 01.
Article in English | MEDLINE | ID: mdl-31131583

ABSTRACT

Premovement active surveillance for low pathogenicity avian influenza (LPAI) may be a useful risk management tool for producers during high-risk periods, such as during an LPAI outbreak, or in areas where there is a recognized high risk for LPAI spread. The effectiveness of three active-surveillance protocols in mitigating LPAI spread risk related to the movement of spent broiler breeders to processing was evaluated in this study. Each protocol differed in the amount of real-time reverse transcription polymerase chain reaction (RRT-PCR) and serology testing conducted. The protocols were evaluated with the use of disease transmission and active surveillance simulation models parametrized specifically for broiler breeders to estimate the probability of detecting a current or past infection and the mean proportion of infectious birds at the time of sampling in houses where the infection remains undetected at the time of movement after exposure to the virus. The two values were estimated considering flock infection for 1-28 days prior to the day of scheduled movement. A distribution for the adequate contact rate, a parameter that controls the rate of within-house spread in the disease transmission model, was estimated for this study by a novel forward simulation approach with the use of serology data from three LPAI-infected broiler breeder flocks in the United States. The estimated distribution suggests that the lower contact-rate estimates from previously published studies were not a good fit for the serology results observed in these U.S. flocks, though considerable uncertainty remains in the parameter estimate. The results for the probability of detection and mean proportion of infectious, undetected birds suggest that RRT-PCR testing is most beneficial during the early stages of infection postexposure, and serology testing is most beneficial during the later stages of infection, results that are expected to hold for flocks outside the United States as well. Thus, protocols that combine RRT-PCR and serology testing can offer a more balanced approach with good performance over the disease course in a flock.


Evaluación del efecto de la tasa de transmisión dentro de la parvada en la vigilancia activa previa al movimiento de parvadas infectadas por influenza aviar de baja patogenicidad. La vigilancia activa para la influenza aviar de baja patogenicidad (LPAI) previa al movimiento puede ser una herramienta útil en el manejo de riesgos para los productores durante períodos de alto riesgo, como durante un brote de influenza aviar de baja patogenicidad o en áreas donde se reconoce que existe un alto riesgo de propagación de esta enfermedad. En este estudio, se evaluó la efectividad de tres protocolos de vigilancia activa para mitigar el riesgo de propagación de la influenza aviar de baja patogenicidad relacionado con el movimiento de los reproductores pesados de desecho a la planta de procesamiento. Los protocolos diferían en la cantidad de muestras procesadas por la transcriptasa reversa y reacción en cadena de la polimerasa en tiempo real (rRT-PCR) y por las pruebas serológicas realizadas. Los protocolos se evaluaron utilizando modelos de simulación de vigilancia activa y transmisión de la enfermedad con parámetros específicamente para reproductores pesados, para estimar la probabilidad de detectar una infección actual o pasada y la proporción media de aves con infección activa al momento del muestreo en casetas donde la infección permanecía sin detectar al momento del movimiento después de la exposición al virus. Los dos valores se estimaron considerando la infección de la parvada de uno a 28 días antes de la fecha programada para el movimiento. Una distribución para la tasa de contacto adecuada, un parámetro que controla la tasa de propagación dentro de la caseta en el modelo de transmisión de la enfermedad, se estimó para este estudio mediante un novedoso enfoque de simulación directa utilizando datos serológicos de tres parvadas reproductores pesados infectados con influenza aviar de baja patogenicidad en los Estados Unidos. La distribución estimada sugiere que las estimaciones de la tasa de contacto más baja obtenida de los estudios publicados previamente no fueron una buena opción para los resultados serológicos observados en estas parvadas en los Estados Unidos, aunque sigue existiendo una gran incertidumbre en la estimación del parámetro. Los resultados de la probabilidad de detección y la proporción media de aves con infección no detectadas sugieren que la prueba rRT-PCR es más beneficiosa durante las primeras etapas de la infección después de la exposición, mientras que la serología es más beneficiosa durante las últimas etapas de la infección, resultados que se espera apliquen también para parvadas fuera de los Estados Unidos. Por lo tanto, los protocolos que combinan rRT-PCR y las pruebas de serología pueden ofrecer un enfoque más equilibrado con un buen rendimiento durante el curso de la enfermedad en una parvada.


Subject(s)
Chickens , Disease Outbreaks/veterinary , Epidemiological Monitoring/veterinary , Influenza in Birds/transmission , Poultry Diseases/transmission , Animals , Influenza in Birds/epidemiology , Influenza in Birds/virology , Models, Theoretical , Poultry Diseases/epidemiology , Poultry Diseases/virology , United States/epidemiology
4.
PLoS One ; 13(9): e0204262, 2018.
Article in English | MEDLINE | ID: mdl-30240402

ABSTRACT

The spatial spread of highly pathogenic avian influenza (HPAI) H5N2 during the 2015 outbreak in the U.S. state of Minnesota was analyzed through the estimation of a spatial transmission kernel, which quantifies the infection hazard an infectious premises poses to an uninfected premises some given distance away. Parameters were estimated using a maximum likelihood method for the entire outbreak as well as for two phases defined by the daily number of newly detected HPAI-positive premises. The results indicate both a strong dependence of the likelihood of transmission on distance and a significant distance-independent component of outbreak spread for the overall outbreak. The results further suggest that HPAI spread differed during the later phase of the outbreak. The estimated spatial transmission kernel was used to compare the Minnesota outbreak with previous HPAI outbreaks in the Netherlands and Italy to contextualize the Minnesota transmission kernel results and make additional inferences about HPAI transmission during the Minnesota outbreak. Lastly, the spatial transmission kernel was used to identify high risk areas for HPAI spread in Minnesota. Risk maps were also used to evaluate the potential impact of an early marketing strategy implemented by poultry producers in a county in Minnesota during the outbreak, with results providing evidence that the strategy was successful in reducing the potential for HPAI spread.


Subject(s)
Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , Animals , Disease Outbreaks , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza in Birds/transmission , Influenza in Birds/virology , Likelihood Functions , Minnesota/epidemiology , Models, Theoretical , Poultry
5.
Avian Dis ; 59(3): 355-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26478153

ABSTRACT

The regulatory response to an outbreak of highly pathogenic avian influenza (HPAI) in the United States may involve quarantine and stop movement orders that have the potential to disrupt continuity of operations in the U.S. turkey industry--particularly in the event that an uninfected breeder flock is located within an HPAI Control Area. A group of government-academic-industry leaders developed an approach to minimize the unintended consequences associated with outbreak response, which incorporates HPAI control measures to be implemented prior to moving hatching eggs off of the farm. Quantitative simulation models were used to evaluate the movement of potentially contaminated hatching eggs from a breeder henhouse located in an HPAI Control Area, given that active surveillance testing, elevated biosecurity, and a 2-day on-farm holding period were employed. The risk analysis included scenarios of HPAI viruses differing in characteristics as well as scenarios in which infection resulted from artificial insemination. The mean model-predicted number of internally contaminated hatching eggs released per movement from an HPAI-infected turkey breeder henhouse ranged from 0 to 0.008 under the four scenarios evaluated. The results indicate a 95% chance of no internally contaminated eggs being present per movement from an infected house before detection. Sensitivity analysis indicates that these results are robust to variation in key transmission model parameters within the range of their estimates from available literature. Infectious birds at the time of egg collection are a potential pathway of external contamination for eggs stored and then moved off of the farm; the predicted number of such infectious birds was estimated to be low. To date, there has been no evidence of vertical transmission of HPAI virus or low pathogenic avian influenza virus to day-old poults from hatching eggs originating from infected breeders. The application of risk analysis methods was beneficial for evaluating outbreak measures developed through emergency response planning initiatives that consider the managed movement of hatching eggs from monitored premises in an HPAI Control Area.


Subject(s)
Disease Outbreaks/veterinary , Influenza A Virus, H5N2 Subtype , Influenza in Birds/epidemiology , Ovum/virology , Turkeys , Animal Husbandry , Animals , Egg Shell/virology , Female , Influenza in Birds/virology , Male , Models, Biological , Oviposition , Population Surveillance , Risk Factors
6.
Risk Anal ; 35(11): 2057-68, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25867713

ABSTRACT

Control of highly pathogenic avian influenza (HPAI) outbreaks in poultry has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a zone under permit. Nonpasteurized liquid egg (NPLE) is one such commodity for which movements may be permitted, considering inactivation of HPAI virus via pasteurization. Active surveillance testing at the flock level, using targeted matrix gene real-time reversed transcriptase-polymerase chain reaction testing (RRT-PCR) has been incorporated into HPAI emergency response plans as the primary on-farm diagnostic test procedure to detect HPAI in poultry and is considered to be a key risk mitigation measure. To inform decisions regarding the potential movement of NPLE to a pasteurization facility, average HPAI virus concentrations in NPLE produced from a HPAI virus infected, but undetected, commercial table-egg-layer flock were estimated for three HPAI virus strains using quantitative simulation models. Pasteurization under newly proposed international design standards (5 log10 reduction) is predicted to inactivate HPAI virus in NPLE to a very low concentration of less than 1 embryo infectious dose (EID)50 /mL, considering the predicted virus titers in NPLE from a table-egg flock under active surveillance. Dilution of HPAI virus from contaminated eggs in eggs from the same flock, and in a 40,000 lb tanker-truck load of NPLE containing eggs from disease-free flocks was also considered. Risk assessment can be useful in the evaluation of commodity-specific risk mitigation measures to facilitate safe trade in animal products from countries experiencing outbreaks of highly transmissible animal diseases.


Subject(s)
Influenza A virus/pathogenicity , Influenza in Birds/virology , Pasteurization , Risk Reduction Behavior , Animals , Chickens
7.
Avian Dis ; 56(4 Suppl): 897-904, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23402110

ABSTRACT

Emergency response during a highly pathogenic avian influenza (HPAI) outbreak may involve quarantine and movement controls for poultry products such as eggs. However, such disease control measures may disrupt business continuity and impact food security, since egg production facilities often do not have sufficient capacity to store eggs for prolonged periods. We propose the incorporation of a holding time before egg movement in conjunction with targeted active surveillance as a novel approach to move eggs from flocks within a control area with a low likelihood of them being contaminated with HPAI virus. Holding time reduces the likelihood of HPAI-contaminated eggs being moved from a farm before HPAI infection is detected in the flock. We used a stochastic disease transmission model to estimate the HPAI disease prevalence, disease mortality, and fraction of internally contaminated eggs at various time points postinfection of a commercial table-egg layer flock. The transmission model results were then used in a simulation model of a targeted matrix gene real-time reverse transcriptase (RRT)-PCR testing based surveillance protocol to estimate the time to detection and the number of contaminated eggs moved under different holding times. Our simulation results indicate a significant reduction in the number of internally contaminated eggs moved from an HPAI-infected undetected flock with each additional day of holding time. Incorporation of a holding time and the use of targeted surveillance have been adopted by the U.S. Department of Agriculture in their Draft Secure Egg Supply Plan for movement of egg industry products during an HPAI outbreak.


Subject(s)
Chickens , Influenza in Birds/transmission , Ovum/virology , Animals , Computer Simulation , Female , Influenza in Birds/virology , Models, Biological , Population Surveillance , Quarantine , Time Factors
8.
Avian Dis ; 56(4 Suppl): 905-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23402111

ABSTRACT

Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.


Subject(s)
Chickens , Disease Outbreaks/veterinary , Influenza A virus/classification , Influenza in Birds/virology , Animals , Disease Outbreaks/prevention & control , Eggs , Female , Influenza in Birds/diagnosis , Models, Biological , Models, Statistical , Oviposition , Stochastic Processes
9.
Avian Dis ; 55(4): 603-10, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22312980

ABSTRACT

Rapidly increasing and unexplained mortality in commercial poultry flocks may signal the presence of a highly transmissible and reportable disease. Activation of an infectious-disease surveillance system occurs when a key production parameter, i.e., mortality, changes. Various triggers have been proposed to alert producers when mortality exceeds normal limits for a given production system to enable early detection of such diseases. In this article we demonstrate that a simple moving-average trigger is useful for detecting any disease syndrome in caged table-egg layer flocks that manifests itself as sudden, rapidly increasing mortality. We superimposed HPAI disease mortality output data derived from a disease transmission model and from a naturally occurring HPAI outbreak onto normal mortality data from 12 healthy commercial egg-layer flocks, and compared the performance of 7-day moving-average triggers to previously proposed triggers. The moving-average trigger is more efficient, resulting in fewer false-positive alerts and an earlier time to disease detection. It can be easily calculated by using a computer spreadsheet providing only 7 days of mortality data and can be practically and inexpensively implemented by large commercial poultry integrators. A moving-average trigger can be an active component of a production-based surveillance system.


Subject(s)
Chickens , Housing, Animal , Influenza in Birds/mortality , Oviposition , Animals , Disease Outbreaks/veterinary , Female , Models, Biological , Population Surveillance , Time Factors
10.
J Am Vet Med Assoc ; 232(4): 514-29, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18279085

ABSTRACT

OBJECTIVE: To evaluate the feasibility for Rift Valley fever virus (RVFV) to enter the continental United States by various routes as well as to identify states in which domestic and wild ruminant and human populations would be most vulnerable to exposure to RVFV. STUDY DESIGN: Pathways analysis. SAMPLE POPULATION: Animals, commodities, and humans transported from RVFV-endemic countries to the continental United States between 2000 and 2005. PROCEDURES: Initially, agent, host, and environmental factors important in the epidemiologic aspects of RVFV were used to develop a list of potential pathways for release of RVFV into the continental United States. Next, the feasibility of each pathway was evaluated by use of data contained in governmental and public domain sources. Finally, entry points into the continental United States for each feasible pathway were used to identify the domestic and wild ruminant and human populations at risk for exposure to RVFV. RESULTS: Feasible pathways for entry of RVFV into the continental United States were importation of RVFV-infected animals, entry of RVFV-infected people, mechanical transport of RVFV-infected insect vectors, and smuggling of live virus. CONCLUSIONS AND CLINICAL RELEVANCE: Domestic ruminant livestock, ruminant wildlife, and people in 14 states (Alabama, California, Florida, Georgia, Maine, Maryland, Massachusetts, Minnesota, New Jersey, New York, Pennsylvania, South Carolina, Texas, and Virginia) appeared to be most vulnerable to exposure to RVFV. Pathways analysis can provide the requisite information needed to construct an effective targeted surveillance plan for RVFV to enable rapid detection and response by animal health and public health officials.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Public Health , Rift Valley Fever/transmission , Rift Valley Fever/veterinary , Zoonoses , Animals , Disease Outbreaks/veterinary , Disease Vectors , Environmental Exposure , Humans , Rift Valley Fever/epidemiology , Rift Valley fever virus , Transportation , Travel , United States/epidemiology
11.
Ann N Y Acad Sci ; 1081: 163-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17135506

ABSTRACT

In the United States, some 1.7 million agar gel immuno diffusion (AGID) tests for avian influenza (AI) are conducted yearly by various poultry groups, governmental sectors, and private industry. In addition to the AGID test, additional testing includes virus isolations, enzyme-linked immunosorbent assays, real-time reverse transcriptase polymerase chain reactions, and hemagglutination inhibition (HI) tests. HI and neuraminidase inhibition tests are conducted on positive AGID samples to determine the subtype. Directigen, a type of antigen capture test, is used in the field in some cases. If monitoring and surveillance activities give rise to a suspicious test result, the accredited veterinarian and official State laboratory are required to report these to the governmental authorities. A thorough investigation in collaboration with the National Veterinary Services Laboratories (a World Organization for Animal Health--AI reference laboratory), State and Federal veterinarians, and others is conducted. Testing conducted as part of the National Poultry Improvement Plan (NPIP) effectively monitors the status of breeder and multiplier flocks. A new commercial poultry program is being added and will expand NPIP AI testing to all commercial flocks. Private poultry companies conduct additional tests; and in the poultry-producing States, there are active state-wide programs to monitor poultry health. All components of the live-bird market system (source flocks, haulers, dealers, and markets) are tested under the Low Pathogenicity AI Live-Bird Market Program.


Subject(s)
Diagnostic Tests, Routine/veterinary , Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Influenza in Birds/epidemiology , Sentinel Surveillance/veterinary , Animals , Birds , Diagnostic Tests, Routine/standards , Influenza A virus/genetics , Influenza A virus/immunology , Poultry , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...