Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 255: 121495, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554629

ABSTRACT

Microbial community assembly (MCA) processes that shape microbial communities in environments are being used to analyze engineered bioreactors such as activated sludge systems and anaerobic digesters. The goal of studying MCA is to be able to understand and predict the effect of design and operation procedures on bioreactor microbial composition and function. Ultimately, this can lead to bioreactors that are more efficient, resilient, or resistant to perturbations. This review summarizes the ecological theories underpinning MCA, evaluates MCA analysis methods, analyzes how these MCA-based methods are applied to engineered bioreactors, and extracts lessons from case studies. Furthermore, we suggest future directions in MCA research in engineered bioreactor systems. The review aims to provide insights and guidance to the growing number of environmental engineers who wish to design and understand bioreactors through the lens of MCA.

2.
J Vis Exp ; (143)2019 01 30.
Article in English | MEDLINE | ID: mdl-30774142

ABSTRACT

Experimental bioreactors, such as those treating wastewater, contain particles whose size and shape are important parameters. For example, the size and shape of activated sludge flocs can indicate the conditions at the microscale, and also directly affect how well the sludge settles in a clarifier. Particle size and shape are both misleadingly 'simple' measurements. Many subtle issues, often unaddressed in informal protocols, can arise when sampling, imaging, and analyzing particles. Sampling methods may be biased or not provide enough statistical power. The samples themselves may be poorly preserved or undergo alteration during immobilization. Images may not be of sufficient quality; overlapping particles, depth of field, magnification level, and various noise can all produce poor results. Poorly specified analysis can introduce bias, such as that produced by manual image thresholding and segmentation. Affordability and throughput are desirable alongside reproducibility. An affordable, high throughput method can enable more frequent particle measurement, producing many images containing thousands of particles. A method that uses inexpensive reagents, a common dissecting microscope, and freely-available open source analysis software allows repeatable, accessible, reproducible, and partially-automated experimental results. Further, the product of such a method can be well-formatted, well-defined, and easily understood by data analysis software, easing both within-lab analyses and data sharing between labs. We present a protocol that details the steps needed to produce such a product, including: sampling, sample preparation and immobilization in agar, digital image acquisition, digital image analysis, and examples of experiment-specific figure generation from the analysis results. We have also included an open-source data analysis pipeline to support this protocol.


Subject(s)
Agar/chemistry , Particle Size , Sewage/analysis , Software , Image Processing, Computer-Assisted , Quality Control , Reproducibility of Results
3.
Water Res ; 147: 177-183, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30308376

ABSTRACT

Biological floc size is an important reactor microenvironment parameter that is often not experimentally controlled due to a lack of suitable methods. Here, we introduce the Couette-Taylor bioreactor (CTB) as an improved tool for controlling biological floc size, specifically as compared with bubble-column sequencing batch reactors (SBRs). A CTB consists of two concentric walls, either of which may be rotated to induce fluid motion. The induced flow produces hydrodynamic shear which is more uniform than that produced through aeration in SBRs. Because hydrodynamic shear is a major parameter controlling floc size, we hypothesized the ability to better control shear rates within a CTB would enable better-controlled floc sizes. To test this hypothesis, we measured the particle size distributions of activated sludge flocs from CTBs with either inner (iCTB) or outer (oCTB) rotating walls as well as SBRs with varying height to diameter ratios (0.5, 1.1, and 9.4). The rotation speed of the CTBs and aeration rate of the SBRs were varied to produce predicted mean shear rates from 25 to 250 s-1. Further, the shear rate distributions for each experiment were estimated using computational fluid dynamics (CFD). In all SBR experiments, the floc distributions did not significantly vary with shear rate or geometry, likely because shear rates (estimated by CFD) differed much less than originally predicted by theory. In the CTB experiments, the mean particle size decreased proportionally with increased hydrodynamic shear, and iCTBs produced particle size distributions with smaller coefficients of variation than oCTBs (0.3 vs. 0.5-0.7, respectively).


Subject(s)
Bioreactors , Waste Disposal, Fluid , Flocculation , Particle Size , Sewage
4.
Curr Opin Biotechnol ; 33: 112-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25710123

ABSTRACT

In the continuing quest to relate microbial communities in bioreactors to function and environmental and operational conditions, engineers and biotechnologists have adopted the latest molecular and 'omic methods. Despite the large amounts of data generated, gaining mechanistic insights and using the data for predictive and practical purposes is still a huge challenge. We present a methodological framework that can guide experimental design, and discuss specific issues that can affect how researchers generate and use data to elucidate the relationships. We also identify, in general terms, bioreactor research opportunities that appear promising.


Subject(s)
Bioreactors , Ecosystem , Biotechnology/methods , Soil Microbiology
5.
ACS Nano ; 4(11): 6883-93, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-20945933

ABSTRACT

In this study, we investigate photophysical and photoinduced current responses of a nanocomposite which consists of multiwalled carbon nanotubes (CNTs), thiol derivative perylene compound (ETPTCDI), and cadmium selenide quantum dots (QDs). These QDs as well as the ETPTCDI harvest photons and transfer their excited electrons or holes to CNTs to complete the circuit. Both QDs and ETPTCDI contribute charges to the carbon nanotubes, which increased the overall photon harvest efficiency of the nanocomposite. Herein, we investigate through a series of photophysical photoluminescence quenching studies the charge transfer between donors (QDs and ETPTCDI) and acceptor (CNTs). The incorporation of ETPTCDI into the nanocomposite significantly increases the adhesion between QDs and CNTs through bonding between QDs and thiol groups on ETPTCDI and π-π interactions between ETPTCDI and CNTs. Thus, ETPTCDI acted as a molecular linker between QDs and CNTs. Furthermore, a significant increase (>5 times) in the Stern-Volmer constant, K(sv), for QD emission after addition of ETPTCDI-tagged CNTs clearly indicates a large enhancement in the adhesion between CNTs and QDs. The nanocomposite shows a ∼2-4-fold increase in the photoconductivity when exposed to AM1.5 solar-simulated light. The damage to the nanocomposite from the intensity of the solar-simulated light is also investigated. The proposed nanocomposite has the potential for photovoltaic applications such as being the active component in a hybrid bulk heterojunction solar cell.


Subject(s)
Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Perylene/chemistry , Photochemical Processes , Quantum Dots , Cadmium Compounds/chemistry , Electron Transport/radiation effects , Luminescent Measurements , Selenium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...