Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e16718, 2024.
Article in English | MEDLINE | ID: mdl-38188150

ABSTRACT

Unintended consequences of increasing wind energy production include bat mortalities from wind turbine blade strikes. Ultrasonic deterrents (UDs) have been developed to reduce bat mortalities at wind turbines. Our goal was to experimentally assess the species-specific effectiveness of three emission treatments from the UD developed by NRG Systems. We conducted trials in a flight cage measuring approximately 60 m × 10 m × 4.4 m (length × width × height) from July 2020 to May 2021 in San Marcos, Texas, USA. A single UD was placed at either end of the flight cage, and we randomly selected one for each night of field trials. Trials focused on a red bat species group (Lasiurus borealis and Lasiurus blossevillii; n = 46) and four species: cave myotis (Myotis velifer; n = 57), Brazilian free-tailed bats (Tadarida brasiliensis; n = 73), evening bats (Nycteceius humeralis; n = 53), and tricolored bats (Perimyotis subflavus; n = 17). The trials occurred during three treatment emissions: low (emissions from subarrays at 20, 26, and 32 kHz), high (emissions from subarrays at 38, 44, and 50 kHz), and combined (all six emission frequencies). We placed one wild-captured bat into the flight cage for each trial, which consisted of an acclimation period, a control period with the UD powered off, and the three emission treatments (order randomly selected), each interspersed with a control period. We tracked bat flight using four thermal cameras placed outside the flight cage. We quantified the effectiveness of each treatment by comparing the distances each bat flew from the UD during each treatment vs. the control period using quantile regression. Additionally, we conducted an exploratory analysis of differences between sex and season and sex within season using analysis of variance. Broadly, UDs were effective at altering the bats' flight paths as they flew farther from the UD during treatments than during controls; however, results varied by species, sex, season, and sex within season. For the red bat group, bats flew farther from the UD during all treatments than during the control period at all percentiles (p < 0.001), and treatments were comparable in effectiveness. For cave myotis, all percentile distances were farther from the UD during each of the treatments than during the control, except the 90th percentile distance during high, and low was most effective. For evening bats and Brazilian free-tailed bats, results were inconsistent, but high and low were most effective, respectively. For tricolored bats, combined and low were significant at the 10th-75th percentiles, high was significant at all percentiles, and combined was most effective. Results suggest UDs may be an effective means of reducing bat mortalities due to wind turbine blade strikes. We recommend that continued research on UDs focus on low emission treatments, which have decreased sound attenuation and demonstrated effectiveness across the bat species evaluated in this study.


Subject(s)
Chiroptera , Ultrasonics , Animals , Sound , Acclimatization , Caves
2.
PeerJ ; 11: e16580, 2023.
Article in English | MEDLINE | ID: mdl-38084143

ABSTRACT

Background: Operation of wind turbines has resulted in collision fatalities for several bat species, and one proven method to reduce these fatalities is to limit wind turbine blade rotation (i.e., curtail turbines) when fatalities are expected to be highest. Implementation of curtailment can potentially be optimized by targeting times when females are most at risk, as the proportion of females limits the growth and stability of many bat populations. The Brazilian free-tailed bat (Tadarida brasiliensis) is the most common bat fatality at wind energy facilities in California and Texas, and yet there are few available data on the sex ratios of the carcasses that are found. Understanding the sex ratios of fatalities in California and Texas could aid in planning population conservation strategies such as informed curtailment. Methods: We used PCR to determine the sex of bat carcasses collected from wind energy facilities during post-construction monitoring (PCM) studies in California and Texas. In California, we received samples from two locations within the Altamont Pass Wind Resource Area in Alameda County: Golden Hills (GH) (n = 212) and Golden Hills North (GHN) (n = 312). In Texas, we received samples from three wind energy facilities: Los Mirasoles (LM) (Hidalgo County and Starr County) (n = 252), Los Vientos (LV) (Starr County) (n = 568), and Wind Farm A (WFA) (San Patricio County and Bee County) (n = 393). Results: In California, the sex ratios of fatalities did not differ from 50:50, and the sex ratio remained stable over the survey years, but the seasonal timing of peak fatalities was inconsistent. In 2017 and 2018, fatalities peaked between September and October, whereas in 2019 and 2020 fatalities peaked between May and June. In Texas, sex ratios of fatalities varied between locations, with Los Vientos being female-skewed and Wind Farm A being male-skewed. The sex ratio of fatalities was also inconsistent over time. Lastly, for each location in Texas with multiple years studied, we observed a decrease in the proportion of female fatalities over time. Discussion: We observed unexpected variation in the seasonal timing of peak fatalities in California and differences in the sex ratio of fatalities across time and facility location in Texas. In Texas, proximity to different roost types (bridge or cave) likely influenced the sex ratio of fatalities at wind energy facilities. Due to the inconsistencies in the timing of peak female fatalities, we were unable to determine an optimum curtailment period; however, there may be location-specific trends that warrant future investigation. More research should be done over the entirety of the bat active season to better understand these trends in Texas. In addition, standardization of PCM studies could assist future research efforts, enhance current monitoring efforts, and facilitate research on post-construction monitoring studies.


Subject(s)
Chiroptera , Renewable Energy , Female , Male , Animals , Sex Ratio , Texas/epidemiology , Seasons
3.
Animals (Basel) ; 12(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35158666

ABSTRACT

Patterns of bat activity and mortalities at wind energy facilities suggest that bats are attracted to wind turbines based on bat behavioral responses to wind turbines. For example, current monitoring efforts suggest that bat activity increases post-wind turbine construction, with bats making multiple passes near wind turbines. We separated the attraction hypothesis into five previously proposed explanations of bat interactions at or near wind turbines, including attraction based on noise, roost sites, foraging and water, mating behavior, and lights, and one new hypothesis regarding olfaction, and provide a state of the knowledge in 2022. Our review indicates that future research should prioritize attraction based on social behaviors, such as mating and scent-marking, as this aspect of the attraction hypothesis has many postulates and remains the most unclear. Relatively more data regarding attraction to wind turbines based on lighting and noise emission exist, and these data indicate that these are unlikely attractants. Analyzing attraction at the species-level should be prioritized because of differences in foraging, flight, and social behavior among bat species. Lastly, research assessing bat attraction at various scales, such as the turbine or facility scale, is lacking, which could provide important insights for both wind turbine siting decisions and bat mortality minimization strategies. Identifying the causes of bat interactions with wind turbines is critical for developing effective impact minimization strategies.

4.
PeerJ ; 8: e10348, 2020.
Article in English | MEDLINE | ID: mdl-33240657

ABSTRACT

There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.

SELECTION OF CITATIONS
SEARCH DETAIL
...