Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Appl Plant Sci ; 11(5): e11545, 2023.
Article in English | MEDLINE | ID: mdl-37915427

ABSTRACT

Premise: Field images are important sources of information for research in the natural sciences. However, images that lack photogrammetric scale bars, including most iNaturalist observations, cannot yield accurate trait measurements. We introduce FieldPrism, a novel system of photogrammetric markers, QR codes, and software to automate the curation of snapshot vouchers. Methods and Results: Our photogrammetric background templates (FieldSheets) increase the utility of field images by providing machine-readable scale bars and photogrammetric reference points to automatically correct image distortion and calculate a pixel-to-metric conversion ratio. Users can generate a QR code flipbook derived from a specimen identifier naming hierarchy, enabling machine-readable specimen identification for automatic file renaming. We also developed FieldStation, a Raspberry Pi-based mobile imaging apparatus that records images, GPS location, and metadata redundantly on up to four USB storage devices and can be monitored and controlled from any Wi-Fi connected device. Conclusions: FieldPrism is a flexible software tool designed to standardize and improve the utility of images captured in the field. When paired with the optional FieldStation, researchers can create a self-contained mobile imaging apparatus for quantitative trait data collection.

3.
Appl Plant Sci ; 11(5): e11548, 2023.
Article in English | MEDLINE | ID: mdl-37915430

ABSTRACT

Premise: Quantitative plant traits play a crucial role in biological research. However, traditional methods for measuring plant morphology are time consuming and have limited scalability. We present LeafMachine2, a suite of modular machine learning and computer vision tools that can automatically extract a base set of leaf traits from digital plant data sets. Methods: LeafMachine2 was trained on 494,766 manually prepared annotations from 5648 herbarium images obtained from 288 institutions and representing 2663 species; it employs a set of plant component detection and segmentation algorithms to isolate individual leaves, petioles, fruits, flowers, wood samples, buds, and roots. Our landmarking network automatically identifies and measures nine pseudo-landmarks that occur on most broadleaf taxa. Text labels and barcodes are automatically identified by an archival component detector and are prepared for optical character recognition methods or natural language processing algorithms. Results: LeafMachine2 can extract trait data from at least 245 angiosperm families and calculate pixel-to-metric conversion factors for 26 commonly used ruler types. Discussion: LeafMachine2 is a highly efficient tool for generating large quantities of plant trait data, even from occluded or overlapping leaves, field images, and non-archival data sets. Our project, along with similar initiatives, has made significant progress in removing the bottleneck in plant trait data acquisition from herbarium specimens and shifted the focus toward the crucial task of data revision and quality control.

4.
Appl Plant Sci ; 8(6): e11367, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32626609

ABSTRACT

PREMISE: Obtaining phenotypic data from herbarium specimens can provide important insights into plant evolution and ecology but requires significant manual effort and time. Here, we present LeafMachine, an application designed to autonomously measure leaves from digitized herbarium specimens or leaf images using an ensemble of machine learning algorithms. METHODS AND RESULTS: We trained LeafMachine on 2685 randomly sampled specimens from 138 herbaria and evaluated its performance on specimens spanning 20 diverse families and varying widely in resolution, quality, and layout. LeafMachine successfully extracted at least one leaf measurement from 82.0% and 60.8% of high- and low-resolution images, respectively. Of the unmeasured specimens, only 0.9% and 2.1% of high- and low-resolution images, respectively, were visually judged to have measurable leaves. CONCLUSIONS: This flexible autonomous tool has the potential to vastly increase available trait information from herbarium specimens, and inform a multitude of evolutionary and ecological studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...