Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Am J Cancer Res ; 5(4): 1507-18, 2015.
Article in English | MEDLINE | ID: mdl-26101714

ABSTRACT

Variable clinical responses, tumor heterogeneity, and drug resistance reduce long-term survival outcomes for metastatic melanoma patients. To guide and accelerate drug development, we characterized tumor responses for five melanoma patient derived xenograft models treated with Vemurafenib. Three BRAF(V600E) models showed acquired drug resistance, one BRAF(V600E) model had a complete and durable response, and a BRAF(V600V) model was expectedly unresponsive. In progressing tumors, a variety of resistance mechanisms to BRAF inhibition were uncovered, including mutant BRAF alternative splicing, NRAS mutation, COT (MAP3K8) overexpression, and increased mutant BRAF gene amplification and copy number. The resistance mechanisms among the patient derived xenograft models were similar to the resistance pathways identified in clinical specimens from patients progressing on BRAF inhibitor therapy. In addition, there was both inter- and intra-patient heterogeneity in resistance mechanisms, accompanied by heterogeneous pERK expression immunostaining profiles. MEK monotherapy of Vemurafenib-resistant tumors caused toxicity and acquired drug resistance. However, tumors were eradicated when Vemurafenib was combined the MEK inhibitor. The diversity of drug responses among the xenograft models; the distinct mechanisms of resistance; and the ability to overcome resistance by the addition of a MEK inhibitor provide a scheduling rationale for clinical trials of next-generation drug combinations.

2.
Neoplasia ; 16(3): 193-206, 206.e19-25, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24726753

ABSTRACT

The high-mobility group-box transcription factor sex-determining region Y-box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications.


Subject(s)
Astrocytes/pathology , Brain Neoplasms/pathology , Glioblastoma/pathology , SOXB1 Transcription Factors/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Differentiation/genetics , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neuronal Plasticity/physiology , SOXB1 Transcription Factors/genetics , Xenograft Model Antitumor Assays
3.
Pediatr Blood Cancer ; 61(9): 1570-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24687871

ABSTRACT

BACKGROUND: Precision (Personalized) medicine has the potential to revolutionize patient health care especially for many cancers where the fundamental disease etiology remains either elusive or has no available therapy. Here we outline a study in alveolar rhabdomyosarcoma, in which we use gene expression profiling and a series of drug prediction algorithms combined with a matched patient-derived xenograft (PDX) model to test bioinformatically predicted therapies. PROCEDURE: A PDX model was developed from a patient biopsy and a number of drugs identified using gene expression analysis in combination with drug prediction algorithms. Drugs chosen from each of the predictive methodologies, along with the patient's standard-of-care therapy (ICE-T), were tested in vivo in the PDX tumor. A second study was initiated using the tumors that re-grew following the ICE-T treatment. Further expression analysis identified additional therapies with potential anti-tumor efficacy. RESULTS: A number of the predicted therapies were found to be active against the tumors in particular BGJ398 (FGFR2) and ICE-T. Re-transplanted ICE-T treated tumorgrafts demonstrated a decreased response to ICE-T recapitulating the patient's refractory disease. Gene expression profiling of the ICE-T treated tumorgrafts identified cytarabine (SLC29A1) as a potential therapy, which was shown, along with BGJ398, to be highly active in vivo. CONCLUSIONS: This study illustrates that PDX models are suitable surrogates for testing potential therapeutic strategies based on gene expression analysis, modeling clinical drug resistance and hold the potential to assist in guiding prospective patient care.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/drug therapy , Precision Medicine , Rhabdomyosarcoma, Alveolar/drug therapy , Xenograft Model Antitumor Assays , Adult , Algorithms , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cytarabine/administration & dosage , Female , Gene Expression Profiling , Humans , Mice , Mice, Nude , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Oligonucleotide Array Sequence Analysis , Phenylurea Compounds/administration & dosage , Pyrimidines/administration & dosage , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/secondary
4.
J Transl Med ; 11: 213, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-24040940

ABSTRACT

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNST) are rare highly aggressive sarcomas that affect 8-13% of people with neurofibromatosis type 1. The prognosis for patients with MPNST is very poor. Despite TOP2A overexpression in these tumors, doxorubicin resistance is common, and the mechanisms of chemotherapy resistance in MPNST are poorly understood. Molecular-guided therapy prediction is an emerging strategy for treatment refractory sarcomas that involves identification of therapy response and resistance mechanisms in individual tumors. Here, we report the results from a personalized, molecular-guided therapy analysis of MPNST samples. METHODS: Established molecular-guided therapy prediction software algorithms were used to analyze published microarray data from human MPNST samples and cell lines, with benign neurofibroma tissue controls. MPNST and benign neurofibroma-derived cell lines were used for confirmatory in vitro experimentation using quantitative real-time PCR and growth inhibition assays. Microarray data was analyzed using Affymetrix expression console MAS 5.0 method. Significance was calculated with Welch's t-test with non-corrected p-value < 0.05 and validated using permutation testing across samples. Paired Student's t-tests were used to compare relative EC50 values from independent growth inhibition experiments. RESULTS: Molecular guided therapy predictions highlight substantial variability amongst human MPNST samples in expression of drug target and drug resistance pathways, as well as some similarities amongst samples, including common up-regulation of DNA repair mechanisms. In a subset of MPNSTs, high expression of ABCC1 is observed, serving as a predicted contra-indication for doxorubicin and related therapeutics in these patients. These microarray-based results are confirmed with quantitative, real-time PCR and immunofluorescence. The functional effect of drug efflux in MPNST-derived cells is confirmed using in vitro growth inhibition assays. Alternative therapeutics supported by the molecular-guided therapy predictions are reported and tested in MPNST-derived cells. CONCLUSIONS: These results confirm the substantial molecular heterogeneity of MPNSTs and validate molecular-guided therapy predictions in vitro. The observed molecular heterogeneity in MPNSTs influences therapy prediction. Also, mechanisms involving drug transport and DNA damage repair are primary mediators of MPNST chemotherapy resistance. Together, these findings support the utility of individualized therapy in MPNST as in other sarcomas, and provide initial proof-of concept that individualized therapy prediction can be accomplished.


Subject(s)
Drug Resistance, Neoplasm , Molecular Targeted Therapy , Nerve Sheath Neoplasms/pathology , Nerve Sheath Neoplasms/therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Phenotype , Precision Medicine
5.
J Transl Med ; 11: 158, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23815880

ABSTRACT

BACKGROUND: A successful therapeutic strategy, specifically tailored to the molecular constitution of an individual and their disease, is an ambitious objective of modern medicine. In this report, we highlight a feasibility study in canine osteosarcoma focused on refining the infrastructure and processes required for prospective clinical trials using a series of gene expression-based Personalized Medicine (PMed) algorithms to predict suitable therapies within 5 days of sample receipt. METHODS: Tumor tissue samples were collected immediately following limb amputation and shipped overnight from veterinary practices. Upon receipt (day 1), RNA was extracted from snap-frozen tissue, with an adjacent H&E section for pathological diagnosis. Samples passing RNA and pathology QC were shipped to a CLIA-certified laboratory for genomic profiling. After mapping of canine probe sets to human genes and normalization against a (normal) reference set, gene level Z-scores were submitted to the PMed algorithms. The resulting PMed report was immediately forwarded to the veterinarians. Upon receipt and review of the PMed report, feedback from the practicing veterinarians was captured. RESULTS: 20 subjects were enrolled over a 5 month period. Tissue from 13 subjects passed both histological and RNA QC and were submitted for genomic analysis and subsequent PMed analysis and report generation. 11 of the 13 samples for which PMed reports were produced were communicated to the veterinarian within the target 5 business days. Of the 7 samples that failed QC, 4 were due to poor RNA quality, whereas 2 were failed following pathological review. Comments from the practicing veterinarians were generally positive and constructive, highlighting a number of areas for improvement, including enhanced education regarding PMed report interpretation, drug availability, affordable pricing and suitable canine dosing. CONCLUSIONS: This feasibility trial demonstrated that with the appropriate infrastructure and processes it is possible to perform an in-depth molecular analysis of a patient's tumor in support of real time therapeutic decision making within 5 days of sample receipt. A number of areas for improvement have been identified that should reduce the level of sample attrition and support clinical decision making.


Subject(s)
Dog Diseases/therapy , Osteosarcoma/veterinary , Precision Medicine , Animals , Dogs , Feasibility Studies , Female , Male , Osteosarcoma/therapy , Paraffin Embedding , Principal Component Analysis , Quality Control , Time Factors , Tissue Fixation
6.
J Transl Med ; 10: 125, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22709571

ABSTRACT

BACKGROUND: There is resurgence within drug and biomarker development communities for the use of primary tumorgraft models as improved predictors of patient tumor response to novel therapeutic strategies. Despite perceived advantages over cell line derived xenograft models, there is limited data comparing the genotype and phenotype of tumorgrafts to the donor patient tumor, limiting the determination of molecular relevance of the tumorgraft model. This report directly compares the genomic characteristics of patient tumors and the derived tumorgraft models, including gene expression, and oncogenic mutation status. METHODS: Fresh tumor tissues from 182 cancer patients were implanted subcutaneously into immune-compromised mice for the development of primary patient tumorgraft models. Histological assessment was performed on both patient tumors and the resulting tumorgraft models. Somatic mutations in key oncogenes and gene expression levels of resulting tumorgrafts were compared to the matched patient tumors using the OncoCarta (Sequenom, San Diego, CA) and human gene microarray (Affymetrix, Santa Clara, CA) platforms respectively. The genomic stability of the established tumorgrafts was assessed across serial in vivo generations in a representative subset of models. The genomes of patient tumors that formed tumorgrafts were compared to those that did not to identify the possible molecular basis to successful engraftment or rejection. RESULTS: Fresh tumor tissues from 182 cancer patients were implanted into immune-compromised mice with forty-nine tumorgraft models that have been successfully established, exhibiting strong histological and genomic fidelity to the originating patient tumors. Comparison of the transcriptomes and oncogenic mutations between the tumorgrafts and the matched patient tumors were found to be stable across four tumorgraft generations. Not only did the various tumors retain the differentiation pattern, but supporting stromal elements were preserved. Those genes down-regulated specifically in tumorgrafts were enriched in biological pathways involved in host immune response, consistent with the immune deficiency status of the host. Patient tumors that successfully formed tumorgrafts were enriched for cell signaling, cell cycle, and cytoskeleton pathways and exhibited evidence of reduced immunogenicity. CONCLUSIONS: The preservation of the patient's tumor genomic profile and tumor microenvironment supports the view that primary patient tumorgrafts provide a relevant model to support the translation of new therapeutic strategies and personalized medicine approaches in oncology.


Subject(s)
Genomics , Neoplasms/genetics , Animals , Humans , Mice , Mice, Nude , Mutation , Neoplasms/pathology
7.
PLoS One ; 6(2): e17165, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21365009

ABSTRACT

Mitogen-activated protein kinase kinases (MKK or MEK) 1 and 2 are usually treated as redundant kinases. However, in assessing their relative contribution towards ERK-mediated biologic response investigators have relied on tests of necessity, not sufficiency. In response we developed a novel experimental model using lethal toxin (LeTx), an anthrax toxin-derived pan-MKK protease, and genetically engineered protease resistant MKK mutants (MKKcr) to test the sufficiency of MEK signaling in melanoma SK-MEL-28 cells. Surprisingly, ERK activity persisted in LeTx-treated cells expressing MEK2cr but not MEK1cr. Microarray analysis revealed non-overlapping downstream transcriptional targets of MEK1 and MEK2, and indicated a substantial rescue effect of MEK2cr on proliferation pathways. Furthermore, LeTx efficiently inhibited the cell proliferation and anchorage-independent growth of SK-MEL-28 cells expressing MKK1cr but not MEK2cr. These results indicate in SK-MEL-28 cells MEK1 and MEK2 signaling pathways are not redundant and interchangeable for cell proliferation. We conclude that in the absence of other MKK, MEK2 is sufficient for SK-MEL-28 cell proliferation. MEK1 conditionally compensates for loss of MEK2 only in the presence of other MKK.


Subject(s)
Cell Proliferation , MAP Kinase Kinase 2/physiology , Melanoma/pathology , Skin Neoplasms/pathology , Animals , Antigens, Bacterial/metabolism , Antigens, Bacterial/pharmacology , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , CHO Cells , Catalytic Domain/drug effects , Catalytic Domain/genetics , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Proliferation/drug effects , Cluster Analysis , Cricetinae , Cricetulus , Gene Expression Profiling , Humans , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Melanoma/genetics , Microarray Analysis , Neoplasm Invasiveness , Point Mutation/physiology , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Skin Neoplasms/genetics , Tumor Cells, Cultured
8.
Mol Cancer Ther ; 9(8): 2423-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20682649

ABSTRACT

Prior studies suggest that tumor cell lines harboring RAS mutations display remarkable sensitivity to gemcitabine and etoposide. In a phase II clinical trial of patients with locally advanced or metastatic pancreatic cancer, we evaluated the response rate to a combination of these drugs. Forty chemo-naïve patients with nonresectable and histologically confirmed pancreatic cancer were accrued. Patients received gemcitabine 1,000 mg/m(2) (days 1 and 8) and etoposide 80 mg/m(2) (days 8, 9, and 10; 21-day cycle). The primary end point was radiological response rate. Secondary objectives were determination of overall survival, response duration (time to progression), quality of life, toxicity, and CA 19-9 biomarker response. In 35 evaluable patients, 10 exhibited a radiological partial response and 12 had stable disease in response to treatment. Twenty patients exhibited a >20% decrease in CA 19-9 biomarker levels. Median overall survival was 6.7 months for all patients (40) and 7.2 months for evaluable patients (35). Notably, four patients survived for longer than 1 year, with two patients surviving for more than 2 years. Median time to progression for evaluable patients was 3.1 months. The median overall survival for locally advanced patients was 8.8 months and 6.75 months for metastatic patients. One-year survival was 10% for all patients and 11.4% for evaluable patients. Quality of life improved in 12 patients and remained stable in 3 of the evaluable patients. The primary dose-limiting toxicities were hematologic toxicity and fatigue. These results show that the gemcitabine and etoposide combination is generally well-tolerated and exhibits a response rate similar to other published studies.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Deoxycytidine/analogs & derivatives , Etoposide/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Adult , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Deoxycytidine/adverse effects , Deoxycytidine/therapeutic use , Etoposide/adverse effects , Female , Humans , Male , Middle Aged , Neoplasm Metastasis/drug therapy , Neoplasm Staging , Survival Analysis , Gemcitabine
9.
Nat Biotechnol ; 28(5): 455-62, 2010 May.
Article in English | MEDLINE | ID: mdl-20458315

ABSTRACT

The first formal qualification of safety biomarkers for regulatory decision making marks a milestone in the application of biomarkers to drug development. Following submission of drug toxicity studies and analyses of biomarker performance to the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) by the Predictive Safety Testing Consortium's (PSTC) Nephrotoxicity Working Group, seven renal safety biomarkers have been qualified for limited use in nonclinical and clinical drug development to help guide safety assessments. This was a pilot process, and the experience gained will both facilitate better understanding of how the qualification process will probably evolve and clarify the minimal requirements necessary to evaluate the performance of biomarkers of organ injury within specific contexts.


Subject(s)
Biomarkers, Pharmacological , Drug Approval/legislation & jurisprudence , Kidney , Animals , Drug-Related Side Effects and Adverse Reactions , Europe , Humans , Kidney/drug effects , Kidney/injuries , Pharmaceutical Preparations/standards , United States , United States Food and Drug Administration
10.
Cancer Lett ; 249(1): 40-8, 2007 Apr 28.
Article in English | MEDLINE | ID: mdl-17320282

ABSTRACT

Although our understanding of the molecular pathogenesis of common types of cancer has improved considerably, the development of effective strategies for cancer diagnosis and treatment have lagged behind. Mouse models of cancer potentially represent an efficient means for uncovering diagnostic markers as genetic alterations associated with human tumors can be engineered in mice. In addition, defined stages of tumor development, breeding conditions, and blood sampling can all be controlled and standardized to limit heterogeneity. Alternatively human cancer cells can be injected into mice and tumor development monitored in xenotransplants. Mouse-based studies promise to elucidate a repertoire of protein changes that occur in blood and biological fluids during tumor development. This is illustrated in a study in which we have applied a three-dimensional intact protein analysis system (IPAS) to elucidate detectable protein changes in serum from immunodeficient mice with lung xenografts from orthotopically implanted human A549 lung adenocarcinoma cells. With sufficiently detailed protein sequence identifications, the observed protein changes can be attributed to either the host mouse or the human tumor cells. It is noteworthy that the majority of increases identified have corresponded to relatively abundant serum proteins, some of which have previously been reported as increased in the sera of cancer patients. Proteomic studies of mouse models of cancer allow assessment of the range of changes in plasma proteins that occur with tumor development and may lead to the identification of potential cancer markers applicable to humans.


Subject(s)
Biomarkers, Tumor , Disease Models, Animal , Neoplasms/metabolism , Animals , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Proteomics , RNA, Messenger/metabolism
11.
Invest Ophthalmol Vis Sci ; 47(5): 1876-85, 2006 May.
Article in English | MEDLINE | ID: mdl-16638994

ABSTRACT

PURPOSE: To compare gene expression profiles of lacrimal gland duct and acinar cells after laser capture microdissection (LCM) and identify molecular networks related to K+ secretion, testing the hypothesis that duct cells are responsible for high K+ levels in tears. METHODS: Frozen sections of lacrimal glands from five rats were subjected to LCM to isolate pure samples of duct and acinar cells. RNA was extracted, amplified, reverse transcribed, and hybridized to rat cDNA microarrays. Paired arrays from ducts and acini of the five animals were scanned and analyzed with in-house software. Gene expression was confirmed with fluorescent antibodies and confocal microscopy. RESULTS: A list of 10,294 genes expressed in ducts and acini was searched using gene ontologies related to ion transport. From a list of 55 genes that were expressed in ducts, a panel of genes hypothesized to be involved in basolateral-to-apical transport of K+ and Cl- was chosen for validation by immunofluorescence and confocal microscopy. This analysis confirmed translation of the genes of interest and showed that NKCC1, Na+,K+-ATPase and the M3 cholinergic receptor are expressed on the basolateral membrane of duct cells, whereas KCC1, IK(Ca)1, CFTR, and ClC3 are apically localized. CONCLUSIONS: Laser capture microdissection in conjunction with gene expression analysis provides an excellent approach for studying lacrimal gland duct cells about which relatively little is known at the molecular level. As demonstrated in a proposed model, the polarized expression of transporters and channels on lacrimal gland duct membranes is consistent with the hypothesis that duct cells secrete the relatively high K+ in lacrimal fluid.


Subject(s)
Gene Expression/physiology , Lacrimal Apparatus/metabolism , Potassium/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fluorescent Antibody Technique, Indirect , Gene Expression Profiling , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Lacrimal Apparatus/cytology , Lasers , Male , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Sodium-Potassium-Chloride Symporters/genetics , Sodium-Potassium-Chloride Symporters/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Solute Carrier Family 12, Member 2 , Symporters/genetics , Symporters/metabolism , K Cl- Cotransporters
12.
Mol Cancer Res ; 3(3): 119-29, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15798092

ABSTRACT

Tumor cell lines are relied on extensively for cancer investigations, yet cultured cells in an in vitro environment differ considerably in behavior compared with those of the same cancer cells that proliferate and form tumors in vivo. To uncover gene expression changes related to tumor formation, gene expression profiles of human lung adenocarcinoma (A549) cells grown as lung tumors in immune-compromised mice were compared with profiles of the same cells grown in vitro. Additionally, profiles of uninvolved adjacent mouse tissue were determined. A profound interplay between cancer cells and the host was shown that affected a complex protein interaction network involving processes of extracellular interaction, growth factor signaling, hemostasis, immune response, and transcriptional regulation. Growth in vivo of A549 cells, which carry an activating k-ras mutation, induced changes in gene expression that corresponded highly to a pattern characteristic of human lung tumors with k-ras mutation. Cytokines interleukin-4, interleukin-6, and IFN-gamma each induced distinct in vitro genomic responses in cancer cells that emulated many of the changes in gene expression observed in vivo. Genes that were both selectively induced in vivo and overexpressed in human lung adenocarcinoma tumors included CSPG2, which has not been associated previously with tumor formation. Knockdown in A549 of CSPG2 by RNA interference significantly inhibited tumor growth in vivo but not in vitro. Thus, analysis of tumor xenografts by gene expression profiling has the potential for identifying genes involved in tumor development that may not be expressed in cancer cells grown in vitro.


Subject(s)
Adenocarcinoma/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Oligonucleotide Array Sequence Analysis , Animals , Cell Line, Tumor , Female , Humans , Hypoxia , Lung/metabolism , Lung/pathology , Mice , Mice, Nude , Models, Biological , Mutation , Neoplasm Transplantation , Proteins/metabolism , RNA/metabolism , RNA Interference , Signal Transduction , Transcription, Genetic
13.
J Biol Chem ; 280(11): 10253-63, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15637050

ABSTRACT

The Src family of protein-tyrosine kinases (SFKs) participates in a variety of signal transduction pathways, including promotion of cell growth, prevention of apoptosis, and regulation of cell interactions and motility. In particular, SFKs are required for the mitogenic response to platelet-derived growth factor (PDGF). However, it is not clear whether there is a discrete SFK-specific pathway leading to enhanced gene expression or whether SFKs act to generally enhance PDGF-stimulated gene expression. To examine this, we treated quiescent NIH3T3 cells with PDGF in the presence or absence of small molecule inhibitors of SFKs, phosphatidylinositol 3-kinase (PI3K), and MEK1/2. Global patterns of gene expression were analyzed by using Affymetrix Gene-Chip arrays, and data were validated by using reverse transcription-PCR and ribonuclease protection assay. We identified a discrete set of immediate early genes induced by PDGF and inhibited in the presence of the SFK-selective inhibitor SU6656. A subset of these SFK-dependent genes was induced by PDGF even in the presence of the MEK1/2 inhibitor U0126 or the PI3K inhibitor LY294002. By using ribonuclease protection assays and nuclear run-off assays, we further determined that PDGF did not stimulate the rate of transcription of these SFK-dependent immediate early genes but rather promoted mRNA stabilization. Our data suggest that PDGF regulates gene expression through an SFK-specific pathway that is distinct from the Ras-MAPK and PI3K pathways, and that SFKs signal gene expression by enhancing mRNA stability.


Subject(s)
Fibroblasts/metabolism , Platelet-Derived Growth Factor/metabolism , src-Family Kinases/metabolism , Animals , Apoptosis , Blotting, Western , Butadienes/pharmacology , Cell Movement , Cell Nucleus/metabolism , Cell Proliferation , Chromones/pharmacology , Cluster Analysis , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase Kinases/metabolism , Mice , Morpholines/pharmacology , NIH 3T3 Cells , Nitriles/pharmacology , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , RNA/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleases/metabolism , Signal Transduction , Sulfonamides/pharmacology , Time Factors , Transcription, Genetic
14.
J Transl Med ; 2(1): 35, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15496233

ABSTRACT

This review article focuses on the various aspects of translational research, where research on human subjects can ultimately enhance the diagnosis and treatment of future patients. While we will use specific examples relating to the asbestos related cancer mesothelioma, it should be stressed that the general approach outlined throughout this review is readily applicable to other diseases with an underlying molecular basis. Through the integration of molecular-based technologies, systematic tissue procurement and medical informatics, we now have the ability to identify clinically applicable "genotype"-"phenotype" associations across cohorts of patients that can rapidly be translated into useful diagnostic and treatment strategies. This review will touch on the various steps in the translational pipeline, and highlight some of the most essential elements as well as possible roadblocks that can impact success of the program. Critical issues with regard to Institutional Review Board (IRB) and Health Insurance Portability and Accountability Act (HIPAA) compliance, data standardization, sample procurement, quality control (QC), quality assurance (QA), data analysis, preclinical models and clinical trials are addressed. The various facets of the translational pipeline have been incorporated into a fully integrated computational system, appropriately named Dx2Tx. This system readily allows for the identification of new diagnostic tests, the discovery of biomarkers and drugable targets, and prediction of optimal treatments based upon the underlying molecular basis of the disease.

15.
J Virol ; 78(9): 4914-6, 2004 May.
Article in English | MEDLINE | ID: mdl-15078973

ABSTRACT

While recent studies have demonstrated that retroviral vectors can be used to stably express short hairpin RNA (shRNA) to inhibit gene expression, these studies have utilized replication-defective retroviruses. We describe the creation of a replication-competent, Gateway-compatible retroviral vector capable of expressing shRNA that inhibits the expression of specific genes.


Subject(s)
Birds/virology , Genetic Vectors , RNA, Small Interfering/genetics , Retroviridae/genetics , Virus Replication , Animals , Cell Line , Cell Line, Tumor , Fibroblasts , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Retroviridae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...