Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Cell Biol ; 187: 99-116, 2024.
Article in English | MEDLINE | ID: mdl-38705632

ABSTRACT

Correlative Light Electron Microscopy (CLEM) is a powerful technique to investigate the ultrastructure of specific cells and organelles at sub-cellular resolution. Transmission Electron Microscopy (TEM) is particularly useful to the field of virology, given the small size of the virion, which is below the limit of detection by light microscopy. Furthermore, viral infection results in the rearrangement of host organelles to form spatially defined compartments that facilitate the replication of viruses. With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there has been great interest to study the viral replication complex using CLEM. In this chapter we provide an exemplary workflow describing the safe preparation and processing of cells grown on coverslips and infected with SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/ultrastructure , Humans , COVID-19/virology , Vero Cells , Chlorocebus aethiops , Animals , Microscopy, Electron, Transmission/methods , Virus Replication , Microscopy, Electron/methods
2.
PLoS One ; 19(1): e0297516, 2024.
Article in English | MEDLINE | ID: mdl-38265985

ABSTRACT

The avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms. Vaccines produced in this manner present a risk of reversion as often few consensus level changes are acquired. The process of serial passage is cumbersome, time consuming, solely dependent on the supply of CEE and does not allow for rapid vaccine development in response to newly emerging IBV strains. Both alternative rational attenuation and cell culture-based propagation methods would therefore be highly beneficial. The majority of IBV strains are however unable to be propagated in cell culture proving a significant barrier to the development of cell-based vaccines. In this study we demonstrate the incorporation of a heterologous Spike (S) gene derived from the apathogenic Beaudette strain of IBV into a pathogenic M41 genomic backbone generated a recombinant IBV denoted M41K-Beau(S) that exhibits Beaudette's unique ability to replicate in Vero cells, a cell line licenced for vaccine production. The rIBV M41K-Beau(S) additionally exhibited an attenuated in vivo phenotype which was not the consequence of the presence of a large heterologous gene demonstrating that the Beaudette S not only offers a method for virus propagation in cell culture but also a mechanism for rational attenuation. Although historical research suggested that Beaudette, and by extension the Beaudette S protein was poorly immunogenic, vaccination of chickens with M41K-Beau(S) induced a complete cross protective immune response in terms of clinical disease and tracheal ciliary activity against challenge with a virulent IBV, M41-CK, belonging to the same serogroup as Beaudette. This implies that the amino acid sequence differences between the Beaudette and M41 S proteins have not distorted important protective epitopes. The Beaudette S protein therefore offers a significant avenue for vaccine development, with the advantage of a propagation platform less reliant on CEE.


Subject(s)
Gammacoronavirus , Infectious bronchitis virus , Vaccines , Animals , Chlorocebus aethiops , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Chickens , Infectious bronchitis virus/genetics
3.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36016406

ABSTRACT

The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.


Subject(s)
Coronavirus Infections , Gammacoronavirus , Infectious bronchitis virus , Animals , Chickens , Chlorocebus aethiops , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Mutation , Vero Cells
4.
J Virol ; 96(17): e0110022, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35972294

ABSTRACT

Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Amino Acids , Animals , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Poultry , Poultry Diseases/prevention & control , Poultry Diseases/virology , Temperature , Vaccines, Attenuated , Viral Vaccines/genetics
5.
Front Immunol ; 13: 867707, 2022.
Article in English | MEDLINE | ID: mdl-35418984

ABSTRACT

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.


Subject(s)
COVID-19 , Porcine Respiratory Coronavirus , Swine Diseases , Transmissible gastroenteritis virus , Animals , SARS-CoV-2 , Swine
6.
Viruses ; 12(7)2020 07 14.
Article in English | MEDLINE | ID: mdl-32674326

ABSTRACT

The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious economically important respiratory pathogen of domestic fowl. Reverse genetics allows for the molecular study of pathogenic determinants to enable rational vaccine design. The recombinant IBV (rIBV) Beau-R, a molecular clone of the apathogenic Beaudette strain, has previously been investigated as a vaccine platform. To determine tissues in which Beau-R could effectively deliver antigenic genes, an in vivo study in chickens, the natural host, was used to compare the pattern of viral dissemination of Beau-R to the pathogenic strain M41-CK. Replication of Beau-R was found to be restricted to soft tissue within the beak, whereas M41-CK was detected in beak tissue, trachea and eyelid up to seven days post infection. In vitro assays further identified that, unlike M41-CK, Beau-R could not replicate at 41 °C, the core body temperature of a chicken, but is able to replicate a 37 °C, a temperature relatable to the very upper respiratory tract. Using a panel of rIBVs with defined mutations in the structural and accessory genes, viral replication at permissive and non-permissive temperatures was investigated, identifying that the Beau-R replicase gene was a determinant of temperature sensitivity and that sub-genomic mRNA synthesis had been affected. The identification of temperature sensitive allelic lesions within the Beau-R replicase gene opens up the possibility of using this method of attenuation in other IBV strains for future vaccine development as well as a method to investigate the functions of the IBV replicase proteins.


Subject(s)
Coronavirus Infections/prevention & control , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Vaccination/veterinary , Viral Vaccines/immunology , Animals , Cell Line , Chick Embryo , Chickens , Poultry/virology , Poultry Diseases/virology , RNA, Viral/genetics , Temperature , Vaccines, Attenuated/immunology , Virus Replication/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...