Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Angew Chem Int Ed Engl ; : e202405924, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703400

ABSTRACT

Natural membrane receptors are proteins that can report on changes in the concentration of external chemical messengers. Messenger binding to a receptor produces conformational changes that are relayed through the membrane into the cell; this information allows cells to adapt to changes in their environment. Artificial membrane receptors (R)-1 and (S)-1 are helical α-aminoisobutyric acid (Aib) foldamers that replicate key parts of this information relay. Solution-phase 19F NMR spectroscopy of zinc(II)-capped receptor 1, either in organic solvent or in membrane-mimetic micelles, showed messenger binding produced an enrichment of either left- or right-handed screw-sense; the chirality of the bound messenger was relayed to the other receptor terminus. Furthermore, in situ production of a chemical messenger in the external aqueous environment could be detected in real-time by a racemic mixture of receptor 1 in micelles. The hydrolysis of insoluble anhydrides produced carboxylate in the aqueous phase, which bound to the receptors and gave a distinct 19F NMR output from inside the hydrophobic region of the micelles.

3.
Org Biomol Chem ; 21(48): 9562-9571, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38009076

ABSTRACT

Two short pentapeptides rich in α-aminoisobutyric acid (Aib) residues have been shown to act as enantioselective organocatalysts for the conjugate addition of nucleophiles to nitroolefins. An L-alanine terminated peptide, (Aib)4(L-Ala)NHtBu, which has neither functionalised sidechains nor a highly designed reactive site, used an exposed N-terminal primary amine and the amide bonds of the backbone to mediate catalysis. Folding of this peptide into a 310 helical structure was observed by crystallography. Folding into a helix relays the conformational preference of the chiral alanine residue at the C-terminus to the primary amine at the N-terminus, 0.9 nm distant. The chiral environment and defined shape produced by the 310 helix brings the amine site into proximity to two exposed amide NHs. Reaction scope studies implied that the amine acts as a Brønsted base and the solvent-exposed NH groups of the helix, shown to weakly bind ß-nitrostyrene, are needed to obtain an enantiomeric excess. Replacement of L-alanine with D-phenylalanine gave (Aib)4(D-Phe)NHtBu, a peptide that now catalysed the benchmark reaction with the opposite enantioselectivity. These studies show how achiral residues can play a key role in enantioselective catalysis by peptides through the promotion of folding.


Subject(s)
Amides , Peptides , Stereoisomerism , Models, Molecular , Peptides/chemistry , Phenylalanine/chemistry , Alanine/chemistry , Catalysis , Amines , Protein Conformation
4.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37793073

ABSTRACT

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

5.
Angew Chem Int Ed Engl ; 62(38): e202307841, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37429824

ABSTRACT

Relaying conformational change over several nanometers is central to the function of allosterically regulated proteins. Replicating this mechanism artificially would provide important communication tools, but requires nanometer-sized molecules that reversibly switch between defined shapes in response to signaling molecules. In this work, 1.8 nm long rigid rod oligo(phenylene-ethynylene)s are scaffolds for switchable multi-squaramide hydrogen-bond relays. Each relay can adopt either a parallel or an antiparallel orientation relative to the scaffold; the preferred orientation is dictated by a director group at one end. An amine director responded to proton signals, with acid-base cycles producing multiple reversible changes in relay orientation that were reported by a terminal NH, which is 1.8 nm distant. Moreover, a chemical fuel acted as a dissipative signal. As the fuel was consumed, the relay reverted to its original orientation, illustrating how information from out-of-equilibrium molecular signals can be communicated to a distant site.

6.
Phys Chem Chem Phys ; 25(27): 18121-18131, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37382482

ABSTRACT

Thiourea-based receptors for anions have been widely studied due to their ability to transport anions across phospholipid bilayers. The binding affinity of a tripodal thiourea-based receptor for anions was assessed at the aqueous|organic interface using electrochemical measurements. A 1 : 1 stoichiometry was determined for the complexation of most anions, with a higher stoichiometry found in the presence of excess Cl- and Br- anions. High stability constants were estimated for the formation of the complexes at the aqueous|1,2-dichlorobenzene (DCB) interface. When compared with an organic solvent of higher polarity, nitrobenzene (NB), the high stability constants observed in DCB are believed to be due to the less competitive environment of the less polar solvent. Protonation of the receptor at the bridgehead tertiary amine was also inferred from the potential-dependent voltammetric measurements that are not related to anion:receptor complexation. The inherent advantages of the electrochemical method with the use of low polarity solvents are expected to provide new insights into the binding and transport of newly-developed neutral receptors.

7.
Nat Commun ; 14(1): 2647, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156760

ABSTRACT

Molecular biology achieves control over complex reaction networks by means of molecular systems that translate a chemical input (such as ligand binding) into an orthogonal chemical output (such as acylation or phosphorylation). We present an artificial molecular translation device that converts a chemical input - the presence of chloride ions - into an unrelated chemical output: modulation of the reactivity of an imidazole moiety, both as a Brønsted base and as a nucleophile. The modulation of reactivity operates through the allosteric remote control of imidazole tautomer states. The reversible coordination of chloride to a urea binding site triggers a cascade of conformational changes in a chain of ethylene-bridged hydrogen-bonded ureas, switching the chain's global polarity, that in turn modulates the tautomeric equilibrium of a distal imidazole, and hence its reactivity. Switching reactivities of active sites by dynamically controlling their tautomer states is an untapped strategy for building functional molecular devices with allosteric enzyme-like properties.

8.
J Chem Inf Model ; 63(9): 2728-2734, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37079618

ABSTRACT

We developed an effective binding free energy prediction protocol which incorporates quantum mechanical/molecular mechanical (QM/MM) calculations to substitute the specified atomic charges of force fields with quantum-mechanically recalculated ones at a proposed pose using a mining minima approach with the VeraChem mining minima engine. We tested this protocol using seven well-known targets with 147 different ligands and compared it with classical mining minima and the most popular binding free energy (BFE) methods using different metrics. Our new protocol, dubbed Qcharge-VM2, yielded an overall Pearson correlation of 0.86, which was better than all the methods examined. Qcharge-VM2 performed significantly better than implicit solvent-based methods, such as MM-GBSA and MM-PBSA, but not as good as explicit water-based free energy perturbation methods, such as FEP+, in terms of root-mean-square error, RMSE (1.75 kcal/mol) and mean unsigned error, MUE (1.39 kcal/mol) on a limited set of targets. However, our protocol is substantially less computationally demanding compared with FEP+. The combined accuracy and efficiency of our method can be valuable in drug discovery campaigns.


Subject(s)
Proteins , Ligands , Proteins/chemistry , Entropy , Protein Binding , Solvents/chemistry , Thermodynamics
9.
Chem Sci ; 13(45): 13303-13320, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36507176

ABSTRACT

Metalloproteins perform a diverse array of redox-related reactions facilitated by the increased chemical functionality afforded by their metallocofactors. Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes that are responsible for the breakdown of recalcitrant polysaccharides via oxidative cleavage at the glycosidic bond. The activated copper-oxygen intermediates and their mechanism of formation remains to be established. Neutron protein crystallography which permits direct visualization of protonation states was used to investigate the initial steps of oxygen activation directly following active site copper reduction in Neurospora crassa LPMO9D. Herein, we cryo-trap an activated dioxygen intermediate in a mixture of superoxo and hydroperoxo states, and we identify the conserved second coordination shell residue His157 as the proton donor. Density functional theory calculations indicate that both superoxo and hydroperoxo active site states are stable. The hydroperoxo formed is potentially an early LPMO catalytic reaction intermediate or the first step in the mechanism of hydrogen peroxide formation in the absence of substrate. We observe that the N-terminal amino group of the copper coordinating His1 remains doubly protonated directly following molecular oxygen reduction by copper. Aided by molecular dynamics and mining minima free energy calculations we establish that the conserved second-shell His161 in MtPMO3* displays conformational flexibility in solution and that this flexibility is also observed, though to a lesser extent, in His157 of NcLPMO9D. The imidazolate form of His157 observed in our structure following oxygen intermediate protonation can be attributed to abolished His157 flexibility due steric hindrance in the crystal as well as the solvent-occluded active site environment due to crystal packing. A neutron crystal structure of NcLPMO9D at low pH further supports occlusion of the active site since His157 remains singly protonated even at acidic conditions.

10.
J Am Chem Soc ; 144(47): 21648-21657, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36379007

ABSTRACT

Understanding and controlling peptide foldamer conformation in phospholipid bilayers is a key step toward their use as molecular information relays in membranes. To this end, a new 19F "reporter" tag has been developed and attached to dynamic peptide foldamers. The (R)-1-(trifluoromethyl)ethylamido ((R)-TFEA) reporter was attached to the C-terminus of α-amino-iso-butyric acid (Aib) foldamers. Crystallography confirmed that the foldamers adopted 310 helical conformations. Variable temperature (VT) NMR spectroscopy in organic solvents showed that the (R)-TFEA reporter had an intrinsic preference for P helicity, but the overall screw-sense was dominated by a chiral "controller" at the N-terminus. The 19F NMR chemical shift of the CF3 resonance was correlated with the ability of different N-terminal groups to induce either an M or a P helix in solution. In bilayers, a similar correlation was found. Solution 19F NMR spectroscopy on small unilamellar vesicle (SUV) suspensions containing the same family of (R)-TFEA-labeled foldamers showed broadened but resolvable 19F resonances, with each chemical shift mirroring their relative positions in organic solvents. These studies showed that foldamer conformational preferences are the same in phospholipid bilayers as in organic solvents and also revealed that phospholipid chirality has little influence on conformation.


Subject(s)
Amino Acids , Peptides , Models, Molecular , Magnetic Resonance Spectroscopy , Peptides/chemistry , Amino Acids/chemistry , Phospholipids/chemistry , Solvents
11.
J Mater Chem B ; 10(26): 5016-5027, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35723603

ABSTRACT

Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and ß-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for ß(1,4)-galactosyltransferase (ß4GalT1). ß4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the ß-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, ß4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.


Subject(s)
Liposomes , Oximes , Acetylglucosamine , Glycoconjugates , Oligosaccharides
12.
Chemistry ; 28(9): e202104293, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34932229

ABSTRACT

To investigate how remotely induced changes in ligand folding might affect catalysis by organometallic complexes, dynamic α-amino-iso-butyric acid (Aib) peptide foldamers bearing rhodium(I) N-heterocyclic carbene (NHC) complexes have been synthesized and studied. X-ray crystallography of a foldamer with an N-terminal azide and a C-terminal Rh(NHC)(Cl)(diene) complex showed a racemate with a chiral axis in the Rh(NHC) complex and a distorted 310 helical body. Replacing the azide with either one or two chiral L-α-methylvaline (L-αMeVal) residues gave diastereoisomeric foldamers that each possessed point, helical and axial chirality. NMR spectroscopy revealed an unequal ratio of diastereoisomers for some foldamers, indicating that the chiral conformational preference of the N-terminal residue(s) was relayed down the 1 nm helical body to the axially chiral Rh(NHC) complex. Although the remote chiral residue(s) did not affect the stereoselectivity of hydrosilylation reactions catalysed by these foldamers, these studies suggest a potential pathway towards remote conformational control of organometallic catalysts.


Subject(s)
Heterocyclic Compounds , Organometallic Compounds , Rhodium , Butyric Acid , Catalysis , Heterocyclic Compounds/chemistry , Iridium/chemistry , Methane/analogs & derivatives , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Rhodium/chemistry , Stereoisomerism
13.
J Chem Phys ; 154(10): 104122, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722015

ABSTRACT

A new method called QM-VM2 is presented that efficiently combines statistical mechanics with quantum mechanical (QM) energy potentials in order to calculate noncovalent binding free energies of host-guest systems. QM-VM2 efficiently couples the use of semi-empirical QM (SEQM) energies and geometry optimizations with an underlying molecular mechanics (MM) based conformational search, to find low SEQM energy minima, and allows for processing of these minima at higher levels of ab initio QM theory. A progressive geometry optimization scheme is introduced as a means to increase conformational sampling efficiency. The newly implemented QM-VM2 is used to compute the binding free energies of the host molecule cucurbit[7]uril and a set of 15 guest molecules. The results are presented along with comparisons to experimentally determined binding affinities. For the full set of 15 host-guest complexes, which have a range of formal charges from +1 to +3, SEQM-VM2 based binding free energies show poor correlation with experiment, whereas for the ten +1 complexes only, a significant correlation (R2 = 0.8) is achieved. SEQM-VM2 generation of conformers followed by single-point ab initio QM calculations at the dispersion corrected restricted Hartree-Fock-D3(BJ) and TPSS-D3(BJ) levels of theory, as post-processing corrections, yields a reasonable correlation with experiment for the full set of host-guest complexes (R2 = 0.6 and R2 = 0.7, respectively) and an excellent correlation for the +1 formal charge set (R2 = 1.0 and R2 = 0.9, respectively), as long as a sufficiently large basis set (triple-zeta quality) is employed. The importance of the inclusion of configurational entropy, even at the MM level, for the achievement of good correlation with experiment was demonstrated by comparing the calculated ΔE values with experiment and finding a considerably poorer correlation with experiment than for the calculated free energy ΔE - TΔS. For the complete set of host-guest systems with the range of formal charges, it was observed that the deviation of the predicted binding free energy from experiment correlates somewhat with the net charge of the systems. This observation leads to a simple empirical interpolation scheme to improve the linear regression of the full set.

14.
Chembiochem ; 22(9): 1656-1667, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33411956

ABSTRACT

The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Antimicrobial Cationic Peptides/chemistry , Circular Dichroism , Lipid Bilayers/chemistry , Peptaibols/chemistry , Peptaibols/metabolism , Phosphatidylcholines/chemistry , Stereoisomerism
15.
Chem Commun (Camb) ; 56(89): 13792-13795, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33078185

ABSTRACT

Amino acids modified with an N-terminal anthracene group self-assemble into supramolecular hydrogels upon the addition of a range of salts or cell culture medium. Gel-phase photo-dimerisation of gelators results in hydrogel disassembly and was used to recover cells from 3D culture.

16.
J Am Chem Soc ; 142(44): 18859-18865, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33084320

ABSTRACT

A (FeII)6-coordinated triply interlocked ("Star of David") [2]catenane (612 link) and a (FeII)5-coordinated pentafoil (51) knot are found to selectively transport anions across phospholipid bilayers. Allostery, topology, and building block stoichiometry all play important roles in the efficacy of the ionophoric activity. Multiple FeII cation coordination by the interlocked molecules is crucial: the demetalated catenane exhibits no anion binding in solution nor any transmembrane ion transport properties. However, the topologically trivial, Lehn-type cyclic hexameric FeII helicates-which have similar anion binding affinities to the metalated Star of David catenane in solution-also display no ion transport properties. The unanticipated difference in behavior between the open- and closed-loop structures may arise from conformational restrictions in the linking groups that likely enhances the rigidity of the channel-forming topologically complex molecules. The (FeII)6-coordinated Star of David catenane, derived from a hexameric cyclic helicate, is 2 orders of magnitude more potent in terms of ion transport than the (FeII)5-coordinated pentafoil knot, derived from a cyclic pentamer of the same building block. The reduced efficacy is reminiscent of multisubunit protein ion channels assembled with incorrect monomer stoichiometries.

17.
Chem Sci ; 11(27): 7023-7030, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32953034

ABSTRACT

Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.

18.
J Epidemiol Community Health ; 74(6): 489-594, 2020 06.
Article in English | MEDLINE | ID: mdl-32132228

ABSTRACT

BACKGROUND: Early childhood is a dynamic period of physical, psychosocial and cognitive development, where age appropriate intervention during the preschool years influences psychosocial, behavioural and academic achievement of children. This study evaluated the impact of a comprehensive preschool intervention on psychosocial, cognitive and behavioural school preparedness among children in Addis Ababa, Ethiopia. METHODS: Employing a cluster-sampling design, 150 preschool children who received the basic preschool curriculum (non-intervention) were compared with 100 randomly selected children who received a comprehensive preschool curriculum (intervention) using the Early Development Instrument (EDI) in five domains. Sample t-tests compared means of domain scores. Binary logistic regression analysed proportions of vulnerability in domains and overall. RESULT: There were no group differences in gender, age, special need status or child's first language. Intervention children had higher domain scores on social competence (mean difference 0.67 (SE=0.26)), emotional maturity (mean difference 0.77 (SE=0.29)), language and cognitive development (mean difference 0.67 (SE=0.40)), communication and general knowledge (mean difference 0.82 (SE=0.34)). Accounting for confounding variables, intervention children had a lower chance of overall vulnerability to domain problems (adjusted OR (AOR)=0.38; 95% CI 0.13 to 1.15), language and cognitive development (AOR=0.21; 95% CI 0.03 to 1.64), and social competence (AOR=0.20; 95% CI 0.08 to 0.45). CONCLUSION: The comprehensive intervention was associated with better outcomes on early childhood development across four domains. It is recommended to extend this programme to other areas of Ethiopia, where children do not have appropriate school preparation, to reduce risk of school dropout, negative personal and societal outcomes.


Subject(s)
Child Development , Cognition , Social Skills , Child , Child, Preschool , Educational Status , Ethiopia/epidemiology , Female , Humans , Language , Male , Social Environment
19.
ChemistryOpen ; 9(3): 338-345, 2020 03.
Article in English | MEDLINE | ID: mdl-32195074

ABSTRACT

Two α-aminoisobutyric acid (Aib) foldamers bearing Zn(II)-chelating N-termini have been synthesized and compared with a reported Aib foldamer that has a bis(quinolinyl)/mono(pyridyl) cap (BQPA group). Replacement of the quinolinyl arms of the BQPA-capped foldamer with pyridyl gave a BPPA-capped foldamer, then further replacement of the linking pyridyl with a 1,2,3-triazole gave a BPTA-capped foldamer. Their ability to relay chiral information from carboxylate bound to Zn(II) at the N-terminus to a glycinamide-based NMR reporter of conformational preference at the C-terminus was measured. The importance of the quinolinyl arms became readily apparent, as the foldamers with pyridyl arms were unable to report on the presence of chiral carboxylate in acetonitrile. Low solubility, X-ray crystallography and 1H NMR spectroscopy suggested that interfoldamer interactions inhibited carboxylate binding. However changing solvent to methanol revealed that the end-to-end relay of chiral information could be observed for the Zn(II) complex of the BPTA-capped foldamer at low temperature.

20.
SSM Popul Health ; 10: 100512, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31956692

ABSTRACT

Sex differences in early child development (ECD) are well documented, as is the socioeconomic status (SES) gradient in early development outcomes. However, relatively little is known about whether the SES gradient in ECD outcomes varies by sex. This study examines whether the association between neighbourhood SES and developmental health outcomes of Canadian kindergarten children is different for girls than for boys. Individual-level child development data, collected using the Early Development Instrument (EDI), were combined with neighbourhood-level socioeconomic data from Statistics Canada's Census and Tax Filer databases. Using an SES index comprising 10 socioeconomic variables, we show a significant cross-level interaction between neighbourhood SES and sex in relation to children's developmental outcomes: the neighbourhood SES gradient in child outcomes is steeper for males than for females. This finding was consistent across all five developmental domains measured by the EDI, for overall developmental health, and across geographical regions in Canada. Further research using family-level SES data, data from multiple time points and countries, and qualitative studies would help to further contextualize the observed interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...