Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 19(3)2019 May 01.
Article in English | MEDLINE | ID: mdl-31087083

ABSTRACT

Insect vector behavior and biology can be affected by pathogen-induced changes in the physiology and morphology of the host plant. Herein, we examined the temporal effects of Squash vein yellowing virus (family Potyviridae, genus Ipomovirus) infection on the settling, oviposition preference, and feeding behavior of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1), formerly known as B. tabaci biotype B. Settling and oviposition behavioral choice assays were conducted on pairs of infected and mock-inoculated watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) (Cucurbitales: Cucurbitaceae) at 5-6 days post inoculation (DPI) and 10-12 DPI. Electropenetrography, or electrical penetration graph (both abbreviated EPG), was used to assess differences in feeding behaviors of whitefly on mock-inoculated, 5-6 and 10-12 DPI infected watermelon plants. Whiteflies showed no preference in settling or oviposition on the infected and mock-inoculated plants at 5-6 DPI. However, at 10-12 DPI, whiteflies initially settled on infected plants but then preference of settling shifted to mock-inoculated plants after 8 h. Only at 10-12 DPI, females laid significantly more eggs on mock-inoculated plants than infected plants. EPG revealed no differences in whitefly feeding behaviors among mock-inoculated, 5-6 DPI infected and 10-12 DPI infected plants. The results highlighted the need to examine plant disease progression and its effect on vector behavior and performance, which could play a crucial role in Squash vein yellowing virus spread.


Subject(s)
Feeding Behavior , Hemiptera/physiology , Hemiptera/virology , Potyviridae/physiology , Animals , Citrullus/parasitology , Citrullus/virology , Electrophysiology/methods , Female , Insect Vectors/physiology , Insect Vectors/virology , Oviposition/physiology , Plant Diseases/virology
2.
J Econ Entomol ; 110(4): 1433-1441, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28854650

ABSTRACT

Plant viruses may indirectly affect insect vector behavior and fitness via a shared host plant. Here, we evaluated the host-mediated effects of Squash vein yellowing virus (SqVYV) on the behavior and fitness of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1, formerly biotype B. Alighting, settling, and oviposition behavioral assays were conducted on infected and mock-inoculated squash (Cucurbita pepo L.) and watermelon [Citrullus lanatus (Thunb) Matsum and Nakai] plants. Developmental time of immature stages, adult longevity, and fecundity were measured on infected and mock-inoculated squash plants. For adult longevity and fecundity, whiteflies were reared on infected and mock-inoculated squash plants to determine the effects of nymphal rearing host on the adult stage. More whiteflies alighted and remained settled on infected squash than on mock-inoculated squash 0.25, 1, 8, and 24 h after release. No such initial preference was observed on watermelon plants, but by 8 h after release, more whiteflies were found on mock-inoculated watermelon plants than on infected plants. Whiteflies laid approximately six times more eggs on mock-inoculated watermelon than on infected watermelon; however, no differences were observed on squash. Development from egg to adult emergence was 3 d shorter on infected than mock-inoculated squash plants. Females lived 25% longer and had higher fecundity on infected squash plants than on mock-inoculated plants, regardless of infection status of the rearing host. The host-mediated effects of SqVYV infection on whitefly behavior differ on two cucurbit host plants, suggesting the potential for more rapid spread of the virus within watermelon fields.


Subject(s)
Citrullus/virology , Cucurbita/virology , Hemiptera/physiology , Plant Diseases/virology , Potyviridae/physiology , Animals , Body Size , Fertility , Flight, Animal , Genetic Fitness , Hemiptera/genetics , Longevity , Oviposition
3.
Plant Dis ; 97(9): 1149-1157, 2013 Sep.
Article in English | MEDLINE | ID: mdl-30722417

ABSTRACT

The responses of a diverse group of vining cucurbits to inoculation with Squash vein yellowing virus (SqVYV) were determined. For the first time, Cucurbita maxima, Cucumis dipsaceus, and Cucumis metuliferus were observed to develop necrosis and plant death similar to the SqVYV-induced vine decline in watermelon (Citrullus lanatus var. lanatus). The majority of cucurbits inoculated, however, either exhibited no symptoms of infection, or developed relatively mild symptoms such as vein yellowing of upper, noninoculated leaves. All inoculated plants were sectioned and tested for the presence of SqVYV. The virus was widely distributed in mature, fruit-bearing cucurbits with over 72% of plant sections testing positive for SqVYV by tissue-blot and/or reverse transcription-polymerase chain reaction. Plants of several cucurbits, including a wild citron (Citrullus lanatus var. citroides), were symptomless and had a decreased frequency of virus infection of vine segments compared to susceptible vining cucurbits, indicating a higher level of resistance. However, no significant relationship between the frequency of infection or virus distribution within plants and the symptom response was observed. These results demonstrate that a diverse group of cucurbits may decline when infected with SqVYV, and suggest that widespread distribution of virus within the plant is not the sole cause of decline.

4.
Plant Dis ; 97(9): 1137-1148, 2013 Sep.
Article in English | MEDLINE | ID: mdl-30722421

ABSTRACT

Squash vein yellowing virus (SqVYV) is the cause of viral watermelon vine decline. The virus is whitefly-transmitted, induces a systemic wilt of watermelon plants, and causes necrosis and discoloration of the fruit rind. In the field, SqVYV is often detected in watermelon in mixed infections with other viruses including the aphid-transmitted Papaya ringspot virus type W (PRSV-W). In this study, watermelon plants of different ages were inoculated with SqVYV or SqVYV+PRSV-W in the greenhouse or SqVYV in the field to characterize the physiological response to infection. Symptoms of vine decline appeared about 12 to 16 days after inoculation with SqVYV regardless of plant age at time of inoculation, plant growth habit (trellised or nontrellised), and location (greenhouse or field). However, the presence of PRSV-W delayed the appearance of vine decline symptoms by 2 to 4 days, and vine decline did not develop on plants with no fruit. For all inoculation treatments, more severe symptoms were observed in younger watermelon plants. Physiological responses to SqVYV infection included reduction in plant and fruit weights, alterations in fruit rind and flesh color, reduction in fruit sucrose content, increase in fruit acid content, and changes in plant nutrient composition, particularly increases in Ca, Mg, B, Mn, and Zn and decreases in K and N. These results demonstrate wide-ranging physiological effects of SqVYV infection and provide new insights into watermelon vine decline.

5.
Plant Dis ; 96(6): 839-844, 2012 Jun.
Article in English | MEDLINE | ID: mdl-30727355

ABSTRACT

Squash vein yellowing virus (SqVYV), a recently described Ipomovirus sp. in the family Potyviridae, is the cause of viral watermelon vine decline, a devastating disease in Florida. SqVYV is known to be transmitted by the whitefly, Bemisia tabaci (Gennadius) B strain, but details of the transmission process have not previously been investigated. We completed a series of experiments to determine efficiency of transmission, effects of different acquisition and inoculation access periods, the length of time that whiteflies retained transmissible virus, and the minimum time needed to complete a cycle of acquisition and inoculation. Efficiency was low, with at least 30 whiteflies per plant needed for consistent transmission. Acquisition leading to later transmission peaked at 4 h, and inoculation access periods longer than 4 to 8 h led to no increase in infection rates. Whiteflies retained virus only a short time, with no transmission by 24 h after removal from infected plants. A minimum of 3 h was needed to complete a cycle of transmission under laboratory conditions. These results demonstrate semipersistent transmission of SqVYV and will help refine models of the epidemiology of this virus and the disease it causes.

6.
Virus Res ; 159(2): 110-4, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21549768

ABSTRACT

A variety of fresh market vegetables, including watermelon and tomato are economically important crops in Florida. Whitefly-transmitted Squash vein yellowing virus (SqVYV) was first identified in squash and watermelon in Florida in 2005 and shown to cause a severe decline of watermelon vines as crops approach harvest. Florida is most economically impacted by SqVYV, although the virus has been detected more recently in Indiana and South Carolina. The origin and evolutionary history of SqVYV, one of the few members of the genus Ipomovirus within the family Potyviridae, are not known. Sequence diversity of SqVYV isolates collected at different times, from different locations and from different plant species is being analyzed for insights into the origin of the virus. More recently, Cucurbit leaf crumple virus (CuLCrV) and Cucurbit yellow stunting disorder virus (CYSDV), also whitefly-transmitted, have been detected in watermelon in Florida. Tomato yellow leaf curl virus (TYLCV) was first detected in south Florida tomato crops in 1997. Several surveys have been conducted in the region to identify alternative hosts for these four viruses. Cucurbit weeds including Balsam-apple (Momordica charantia), creeping cucumber (Melothria pendula) and smellmelon (Cucumis melo var. dudaim) provide reservoirs for SqVYV, CuLCrV and/or CYSDV. Green bean (Phaseolus vulgaris) also can be a reservoir for CuLCrV. No wild hosts of TYLCV have been reported in Florida. The effectiveness of insecticides and silver plastic mulch to manage whiteflies and mitigate TYLCV has been demonstrated and is currently being evaluated for SqVYV, CuLCrV and CYSDV. In addition, potential sources of SqVYV resistance have been identified in greenhouse and field screening of watermelon germplasm. Further studies to refine these sources of resistance are underway. Lastly, a comprehensive map of 33,560 hectares (82,928 acres) of vegetable fields in the three counties comprising the majority of the southwest Florida vegetable production area has been developed to identify 'hot spots' and reservoir crops for viruses and whiteflies, and will be useful in evaluation of management strategies to decrease virus incidence in commercial fields.


Subject(s)
Disease Vectors , Ecosystem , Hemiptera/virology , Plant Diseases/virology , Plant Viruses/isolation & purification , Plant Viruses/pathogenicity , Vegetables/virology , Agriculture/methods , Animals , Ecology , Florida , Pest Control , Plant Viruses/classification , Viruses
7.
J Econ Entomol ; 104(2): 474-83, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21510195

ABSTRACT

Feeding by lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae), larvae on sugarcane (a complex hybrid of Saccharum spp.) causes leaf damage, dead hearts, and dead plants that can result in stand and yield loss. A 2-yr greenhouse experiment was conducted to examine sugarcane variety and plant age-specific feeding responses to E. lignosellus. Plants growing from single-eye setts of three varieties were exposed to a single generation of E. lignosellus larvae beginning at the three-, five-, and seven-leaf stages. Results indicated that the physical damage and resulting yield loss of plants attacked by E. lignosellus larvae were dependent on the variety and leaf stage at which they were infested. Significantly more plant damage was observed in all three varieties when infested at the three- than at the seven-leaf stage. Larvae caused significantly more plant damage and reduced yield in CP 89-2143 than in CP 78-1628. Tiller production increased in CP78-1628 and CP 88-1762 when infested at the three-leaf stage, whereas tiller production, biomass and sugar yield decreased in CP 89-2143 when infested at all leaf stages, compared with the untreated control. There was no reduction in yield when CP 78-1628 was infested at the three- or five-leaf stages. Biomass was reduced in CP 88-1762 when plants were infested at any of the leaf stages, but sugar yield was reduced only when infested at the seven-leaf stage. These results indicate that compensation in response to E. lignosellus damage was variety dependent and declined with the delay in infestation time.


Subject(s)
Biomass , Host-Parasite Interactions , Moths/physiology , Saccharum/parasitology , Animals , Feeding Behavior , Larva/physiology , Saccharum/physiology
8.
J Econ Entomol ; 104(1): 155-63, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404853

ABSTRACT

Lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae) is an important pest of sugarcane (a complex hybrid of Saccharum spp.) in southern Florida. Cultural controls for E. lignosellus were evaluated in preparation for the potential loss of effective insecticides. Field studies conducted in 2006 compared the effects of harvest residues from green-harvested sugarcane (no preharvest burning to remove leaf matter) on E. lignosellus stalk damage and yield. Damage by E. lignosellus was significantly lower in plant cane plots that were covered with harvest residues collected from a green-harvested field before shoot emergence compared with plots without harvest residue. There were no yield differences between plots with and without harvest residues in plant or ratoon sugarcane fields in the 2006 study. The effects of three postharvest tillage levels (conventional, intermediate, and no tillage) were evaluated in preharvest burned and green-harvested fields in 2008 and 2009. Significantly less E. lignosellus damage was observed in the green- versus preharvest burned fields in both years. Intermediate and no-tillage plots had very little damage in green-harvested field. Conventional tillage plots had the greatest damage in the green-harvested field and the lowest damage in the preharvest burned field. In 2008, biomass yield was greater in the intermediate than conventional tillage in the green-harvested field, but it was greater in the conventional than in other tillage levels in the preharvest burned field. These studies demonstrated that cultural controls could greatly reduce E. lignosellus damage in sugarcane without the use of insecticides.


Subject(s)
Agriculture/methods , Moths/physiology , Saccharum/parasitology , Animals , Host-Parasite Interactions , Larva/physiology
9.
Environ Entomol ; 39(3): 1012-20, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20550817

ABSTRACT

Lesser cornstalk borer, Elasmopalpus lignosellus Zeller (Lepidoptera: Pyralidae), is an important sugarcane pest in southern Florida. Development of immature stages (eggs, larvae, prepupae, and pupae) of lesser cornstalk borer was observed on sugarcane at constant temperatures (13, 15, 18, 21, 24, 27, 30, 33, and 36 degrees C), 65-70% RH, and a photoperiod of 14:10 (L:D) h. Total development (from egg deposition to adult emergence) ranged from 22.8 +/- 0.3 d at 33 degrees C to 120.7 +/- 2.8 d at 13 degrees C. Lesser cornstalk borer required 543.48 DD to complete development. Developmental time decreased with increase in temperature from 13 to 33 degrees C and increased markedly at 36 degrees C in all immature stages. One linear and six nonlinear models used to model insect development (Briere-1, Briere-2, Logan-6, Lactin, Taylor, and polynomial models) were tested to describe the relationship between temperature and developmental rate (d(-1)). Criteria used to select the best model were the greatest r (2), lowest residual sum of squares (RSS), and Akaike information criterion values. The Briere-1 model fit the data best and provided the best estimates of developmental temperature thresholds for all immature stages on sugarcane. The estimated lower and upper developmental thresholds for total development were 9.3 +/- 1.8 and 37.9 +/- 0.7 degrees C, respectively. The optimal temperature estimated for the total development was 31.39 +/- 0.9 degrees C. Based on these results, we can forecast the different stages of lesser cornstalk borer at different times in sugarcane. This will enable us to choose the best time to control this pest with greater precision.


Subject(s)
Moths/growth & development , Saccharum/parasitology , Temperature , Animals , Larva/growth & development , Models, Biological
10.
Environ Entomol ; 39(6): 2025-32, 2010 Dec.
Article in English | MEDLINE | ID: mdl-22182570

ABSTRACT

The lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae) is an important pest of sugarcane (a complex hybrid of Saccharum spp.) in southern Florida. Reproductive and life table parameters for E. lignosellus were examined at nine constant temperatures from 13 to 36 °C with sugarcane as the larval food source. The pre- and postoviposition periods decreased with increasing temperatures and reached their minimums at 33 and 36 °C, respectively. The oviposition period was longest at 27 °C. The mean fecundity, stage-specific survival, stage-specific fecundity, intrinsic rate of increase, and finite rate of increase were greatest at 30 °C and decreased with increasing or decreasing temperature. The net reproductive rate was greatest at 27 °C. The Logan-6 model best described the relationship between temperature and intrinsic rate of increase. The generation and population doubling times were longest at 13 and shortest at 33 and 30 °C, respectively. The most favorable temperatures for E. lignosellus population growth were between 27 and 33°C. Life table parameters for E. lignosellus reared on sugarcane were greater than for the Mexican rice borer [Eoreuma loftini (Dyar) (Lepidoptera: Crambidae)] reared on an artificial diet at 30 °C. The intrinsic rates of increase for the sugarcane borer [Diatraea saccharalis (F.) (Lepidoptera: Crambidae)] reared on sugarcane or corn were the same as for E. lignosellus reared on sugarcane at 27 °C, but the net reproductive rate was four times higher for the former than the latter borer species.


Subject(s)
Host-Parasite Interactions , Moths/physiology , Oviparity , Saccharum/parasitology , Temperature , Animals , Female , Fertility , Male , Models, Biological , Oviposition
11.
Virus Res ; 135(2): 213-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18455828

ABSTRACT

The genus Ipomovirus is one of six currently recognized genera in the family Potyviridae. The complete nucleotide sequence of Squash vein yellowing virus (SqVYV), a putative ipomovirus recently described in Florida, has been determined. The 9836 nt SqVYV genomic RNA [excluding the poly(A) tail] has one large open reading frame encoding a single polyprotein of 3172 amino acids, typical of the genome organization for most members in the family Potyviridae. The 10 mature proteins predicted to be derived from the SqVYV polyprotein include P1a and P1b but no HC-Pro, similar to Cucumber vein yellowing virus (CVYV) but different from Sweet potato mild mottle virus (SPMMV), both recognized members of the genus Ipomovirus. Phylogenetic analysis of these proteins supports classification of SqVYV as a novel species within the genus Ipomovirus. However, the similar genome organization strategy of SqVYV and CVYV, which differs from that of SPMMV, indicates that the taxonomy of the genus Ipomovirus needs to be re-examined and a new genus created within the family Potyviridae to accommodate the observed discrepancies in ipomovirus genome organization.


Subject(s)
Cucurbita/virology , Cysteine Endopeptidases/metabolism , Potyviridae/classification , Viral Proteins/metabolism , Amino Acid Sequence , Genome, Viral , Molecular Sequence Data , Phylogeny , Polyproteins/chemistry , Polyproteins/genetics , Polyproteins/metabolism , Potyviridae/genetics , Potyviridae/metabolism , Sequence Analysis, DNA , Species Specificity , Viral Proteins/chemistry , Viral Proteins/genetics
12.
Plant Dis ; 92(7): 1119-1123, 2008 Jul.
Article in English | MEDLINE | ID: mdl-30769530

ABSTRACT

Squash vein yellowing virus (SqVYV) is a recently described ipomovirus from cucurbits in Florida that induces the relatively unusual symptoms in watermelon of plant death and fruit rind necrosis and discoloration, commonly known in Florida as watermelon vine decline. In this report, SqVYV infection of Momordica charantia (Balsam-apple), a common cucurbit weed, collected in 2005 and 2007 from within or adjacent to fields of declining watermelon, is demonstrated through the use of nested polymerase chain reaction (PCR). M. charantia plants located in or around fallow watermelon fields between spring and fall 2007 watermelon crops were also infected with SqVYV, indicating that this weed can serve as an oversummering host for this virus. Furthermore, whiteflies were able to acquire SqVYV from infected M. charantia and transmit it to squash and watermelon. Nested PCR was 10 to 1,000 times more sensitive than non-nested PCR for SqVYV detection in several cucurbit hosts, including M. charantia and watermelon. Melothria pendula (creeping cucumber), another common cucurbit weed, was experimentally infected with SqVYV. These results suggest that improved management of M. charantia and other cucurbit weeds needs to be incorporated into watermelon vine decline management plans to reduce sources of SqVYV and other cucurbit viruses.

13.
Phytopathology ; 97(2): 145-54, 2007 Feb.
Article in English | MEDLINE | ID: mdl-18944369

ABSTRACT

ABSTRACT A novel whitefly-transmitted member of the family Potyviridae was isolated from a squash plant (Cucurbita pepo) with vein yellowing symptoms in Florida. The virus, for which the name Squash vein yellowing virus (SqVYV) is proposed, has flexuous rod-shaped particles of approximately 840 nm in length. The experimental host range was limited to species in the family Cucurbitaceae, with the most dramatic symptoms observed in squash and watermelon, but excluded all tested species in the families Amaranthaceae, Apocynaceae, Asteraceae, Chenopodiaceae, Fabaceae, Malvaceae, and Solanaceae. The virus was transmitted by whiteflies (Bemisia tabaci) but was not transmitted by aphids (Myzus persicae). Infection by SqVYV induced inclusion bodies visible by electron and light microscopy that were characteristic of members of the family Potyviridae. Comparison of the SqVYV coat protein gene and protein sequences with those of recognized members of the family Potyviridae indicate that it is a novel member of the genus Ipomovirus. A limited survey revealed that SqVYV also was present in watermelon plants suffering from a vine decline and fruit rot recently observed in Florida and was sufficient to induce these symptoms in greenhouse-grown watermelon, suggesting that SqVYV is the likely cause of this disease.

14.
J Econ Entomol ; 97(6): 2083-94, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15666769

ABSTRACT

Fruit yield and quality of zucchini, Cucurbita pepo L., plants infested with Bemisia argentifolii Bellows & Perring were evaluated in a screenhouse under spring and fall growing conditions by using closely related sister lines that were either susceptible (ZUC61) or tolerant (ZUC76-SLR) to squash silverleaf disorder. Our objective was to test separately the effects of level of whitefly infestation and expression of silverleaf symptoms on zucchini yield and quality. In a second experiment, yield and quality of fruit produced by silverleaf-tolerant zucchini genotypes incorporating two different sources of tolerance (ZUC76-SLR and ZUC33-SLR/PMR) were compared with that of 'Zucchini Elite', a silverleaf-susceptible commercial hybrid. Zucchini fruit yield was reduced in plants exposed to repeated infestations of whiteflies in spring and fall of both experiments. In addition, fruit grew to harvestable size more slowly under the highest whitefly infestations. Fruit quality was reduced at high infestations because of uneven and reduced pigmentation. The fruit yield and quality of ZUC61 and ZUC76-SLR were similarly affected by whitefly infestation despite differences in their susceptibility to squash silverleaf disorder. Fruit from infested plants showed decreased levels of chlorophyll and carotenoids causing the "blanching" of the fruit that is associated with loss of quality and reduced marketability. Leaves of infested plants of all genotypes had reduced levels of photosynthetic and photoprotectant pigments, possibly leading to reduced photosynthesis and consequently reduced yield. We conclude that feeding by high whitefly populations rather than expression of squash silverleaf disorder is responsible for yield and quality reduction in zucchini.


Subject(s)
Cucurbita/growth & development , Hemiptera/growth & development , Plant Diseases , Animals , Breeding , Cucurbita/genetics , Fruit/growth & development , Genotype , Plant Leaves , Population Density , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...