Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 54(29): 8378-81, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26036319

ABSTRACT

A thiol-amine solvent mixture is used to dissolve ten inexpensive bulk oxides (Cu2O, ZnO, GeO2, As2O3, Ag2O, CdO, SnO, Sb2O3, PbO, and Bi2O3) under ambient conditions. Dissolved oxides can be converted to the corresponding sulfides using the thiol as the sulfur source, while selenides and tellurides can be accessed upon mixing with a stoichiometric amount of dissolved selenium or tellurium. The practicality of this method is illustrated by solution depositing Sb2Se3 thin films from compound inks of dissolved Sb2O3 and selenium that give high photoelectrochemical current response. The direct band gap of the resulting material can be tuned from 1.2-1.6 eV by modulating the ink formulation to give compositionally controlled Sb2Se(3-x)S(x) alloys.

2.
J Am Chem Soc ; 135(42): 15722-5, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24125431

ABSTRACT

The ability to solution deposit semiconductor films has received a great deal of recent attention as a way to potentially lower costs for many optoelectronic applications; however, most bulk semiconductors are insoluble in common solvents. Here we describe a novel and relatively nonhazardous binary solvent mixture comprised of 1,2-ethanedithiol and 1,2-ethylenediamine that possesses the remarkable ability to rapidly dissolve a series of nine bulk V2VI3 chalcogenides (V = As, Sb, Bi; VI = S, Se, Te) at room temperature and atmospheric pressure. After solution deposition and low-temperature annealing, the chalcogenides can be fully recovered as good quality, highly crystalline thin films with negligible organic content, as demonstrated for Sb2Se3 and Bi2S3.

3.
ACS Nano ; 6(5): 4222-30, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22537193

ABSTRACT

Organic ligands have the potential to contribute to the reduction potential, or lowest unoccupied molecular orbital (LUMO) energy, of semiconductor nanocrystals. Rationally introducing small, strongly binding, electron-donating ligands should enable improvement in the open circuit potential of hybrid organic/inorganic solar cells by raising the LUMO energy level of the nanocrystal acceptor phase and thereby increasing the energy offset from the polymer highest occupied molecular orbital (HOMO). Hybrid organic/inorganic solar cells fabricated from blends of tert-butylthiol-treated CdSe nanocrystals and poly(3-hexylthiophene) (P3HT) achieved power conversion efficiencies of 1.9%. Compared to devices made from pyridine-treated and nonligand exchanged CdSe, the thiol-treated CdSe nanocrystals are found to consistently exhibit the highest open circuit potentials with V(OC) = 0.80 V. Electrochemical determination of LUMO levels using cyclic voltammetry and spectroelectrochemistry suggest that the thiol-treated CdSe nanocrystals possess the highest lying LUMO of the three, which translates to the highest open circuit potential. Steady-state and time-resolved photoluminescence quenching experiments on P3HT:CdSe films provide insight into how the thiol-treated CdSe nanocrystals also achieve greater current densities in devices relative to pyridine-treated nanocrystals, which are thought to contain a higher density of surface traps.

4.
J Am Chem Soc ; 134(14): 6388-400, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22432700

ABSTRACT

Singlet exciton fission is a process that occurs in select organic semiconductors and entails the splitting of a singlet excited state into two lower triplet excitons located on adjacent chromophores. Research examining this phenomenon has recently seen a renaissance due to the potential to exploit singlet fission within the context of organic photovoltaics to prepare devices with the ability to circumvent the Shockley-Queisser limit. To date, high singlet fission yields have only been reported for crystalline or polycrystalline materials, suggesting that molecular disorder inhibits singlet fission. Here, we report the results of ultrafast transient absorption and time-resolved emission experiments performed on 5,12-diphenyl tetracene (DPT). Unlike tetracene, which tends to form polycrystalline films when vapor deposited, DPT's pendant phenyl groups frustrate crystal growth, yielding amorphous films. Despite the high level of disorder in these films, we find that DPT exhibits a surprisingly high singlet fission yield, with 1.22 triplets being created per excited singlet. This triplet production occurs over two principal time scales, with ~50% of the triplets appearing within 1 ps after photoexcitation followed by a slower phase of triplet growth over a few hundred picoseconds. To fit these kinetics, we have developed a model that assumes that due to molecular disorder, only a subset of DPT dimer pairs adopt configurations that promote fission. Singlet excitons directly excited at these sites can undergo fission rapidly, while singlet excitons created elsewhere in the film must diffuse to these sites to fission.

5.
Dalton Trans ; 41(26): 7835-8, 2012 Jul 14.
Article in English | MEDLINE | ID: mdl-22430172

ABSTRACT

The 1,2,3,4-thiatriazole-5-thiolate anion (TTT(-)) was found to be a strongly binding ligand for CdSe nanocrystals, quantitatively exchanging various long-chain ligands to yield stable colloidal suspensions in common polar solvents. The TTT(-) ligand thermolyzes at <100 °C to produce thiocyanate in situ, resulting in reduced quantum confinement in nanocrystal films. CdSe(TTT) possesses far higher colloidal stability than CdSe(SCN), and that, together with the facile synthesis of TTT(-), implies that this is a useful ligand for nanocrystal applications as a masked thiocyanate.

6.
J Am Chem Soc ; 134(2): 1085-92, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22142224

ABSTRACT

As-prepared CdSe nanocrystals were ligand exchanged using tert-butylthiol, which yielded stable CdSe nanocrystal inks in the strong donor solvent tetramethylurea. The efficacy of ligand exchange was probed by thermogravimetric analysis (TGA) and FT-IR spectroscopy. By studying sequential exchanges of tetradecylphosphonic acid and then tert-butylthiol, TGA and energy dispersive X-ray spectroscopic evidence clearly demonstrated that the ligand exchange is essentially quantitative. The resulting tert-butylthiol-exchanged CdSe nanocrystals undergo facile thermal ligand expulsion (≤200 °C), which was studied by TGA-mass spectrometry. Mild thermal treatment of tert-butylthiol-exchanged CdSe nanocrystal films was found to induce loss of quantum confinement (as evidenced by UV-vis spectroscopy) and provided for increased electrochemical photocurrent, electron mobility, and film stability. Pyridine-exchanged CdSe nanocrystals were employed as a control system throughout to demonstrate the beneficial attributes of tert-butylthiol exchange; namely, lower organic content, better colloidal stability, improved interparticle coupling, and vastly increased electrochemical photocurrent response upon illumination.

7.
Inorg Chem ; 50(3): 723-5, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21235268

ABSTRACT

The photolytic decomposition of triphenylbismuth and di-tert-butyl diselenide under aqueous micellar conditions yields 5-nm bismuth selenide nanocrystals of the BiSe stoichiometry. This is the first example of the bismuth-rich BiSe phase being prepared in a well-dispersed colloidal nanocrystal form.

8.
Chem Commun (Camb) ; (38): 5701-3, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19774241

ABSTRACT

Well-defined tellurium nanorods have been prepared by the photolysis of (t)Bu2Te2 in an aqueous micellar system incorporating dodecanethiol as an auxiliary morphology-directing agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...