Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200241, 2024 May.
Article in English | MEDLINE | ID: mdl-38626361

ABSTRACT

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose pathobiology associates with peripheral blood immune cell levels and activation patterns in an age and sex-dependent manner. This study's objective was to identify immune profile associations with ALS progression, whether the associations are age and sex-specific, and whether immune profiles can predict a future disease course. METHODS: Flow cytometry immune profiles (a combination of 22 peripheral blood immune markers) were generated for 241 participants with ALS and linked to ALS progression, using progression-free survival, which is a composite combining the revised ALS Functional Rating Scale and survival. Participants were first grouped by immune profiles using unsupervised hierarchical clustering, and clusters were associated with subsequent progression-free survival. Next, individual immune markers were associated with progression-free survival using least absolute shrinkage and selection operator-Cox regression. Analyses were stratified by age and sex to identify demographic-specific immune mechanisms. Finally, random forest determined the predictive power of immune profiles on ALS progression in the whole population and again stratified by age and sex. RESULTS: Progression-free survival differed between clusters of participants with similar immune profiles, particularly reduced natural killer (NK)-cell activation associated with slower progression. Individual markers such as neutrophil levels and NK-cell NKp46 expression associated with faster ALS progression while overall NK-cell levels and NK-cell subpopulations associated with slower progression; the strength of these associations varied by age and sex. Adding these immune markers to prediction models dramatically increased short-term prediction compared with routine clinical prognostic variables alone, and the addition of NK-cell markers further improved the prediction accuracy in female participants. DISCUSSION: Specific immune profiles likely contribute to ALS progression in an age and sex-dependent manner, and peripheral immune markers enhance the prediction of short-term clinical outcomes. These findings suggest a complex milieu of immune profiles associated with ALS progression, and more detailed immunophenotyping in ALS will facilitate personalized immunotherapeutics in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Male , Humans , Female , Disease Progression , Prognosis , Biomarkers
3.
Front Cell Neurosci ; 17: 1167688, 2023.
Article in English | MEDLINE | ID: mdl-37206668

ABSTRACT

Introduction: The prevalence of obesity, prediabetes, and diabetes continues to grow worldwide. These metabolic dysfunctions predispose individuals to neurodegenerative diseases and cognitive impairment, including dementias such as Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The innate inflammatory cGAS/STING pathway plays a pivotal role in metabolic dysfunction and is an emerging target of interest in multiple neurodegenerative diseases, including AD/ADRD. Therefore, our goal was to establish a murine model to specifically target the cGAS/STING pathway to study obesity- and prediabetes-induced cognitive impairment. Methods: We performed two pilot studies in cGAS knockout (cGAS-/-) male and female mice designed to characterize basic metabolic and inflammatory phenotypes and examine the impact of high-fat diet (HFD) on metabolic, inflammatory, and cognitive parameters. Results: cGAS-/- mice displayed normal metabolic profiles and retained the ability to respond to inflammatory stimuli, as indicated by an increase in plasma inflammatory cytokine production in response to lipopolysaccharide injection. HFD feeding caused expected increases in body weight and decreases in glucose tolerance, although onset was accelerated in females versus males. While HFD did not increase plasma or hippocampal inflammatory cytokine production, it did alter microglial morphology to a state indicative of activation, particularly in female cGAS-/- mice. However, HFD negatively impacted cognitive outcomes in male, but not female animals. Discussion: Collectively, these results suggest that cGAS-/- mice display sexually dimorphic responses to HFD, possibly based on differences in microglial morphology and cognition.

4.
Immun Ageing ; 19(1): 67, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550567

ABSTRACT

BACKGROUND: Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging (e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role of age in obesity-induced neuroinflammation and cognitive impairment is unclear. To further define this putative relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using a high-fat diet (HFD) mouse model of obesity. RESULTS: First, HFD promoted age-related changes in hippocampal gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young adult and middle-aged mice to determine the effect of age on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, with a bi-directional regulation of hippocampal inflammatory gene expression. CONCLUSIONS: Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.

5.
Front Immunol ; 13: 1012594, 2022.
Article in English | MEDLINE | ID: mdl-36248795

ABSTRACT

Obesity, prediabetes, and diabetes are growing in prevalence worldwide. These metabolic disorders are associated with neurodegenerative diseases, particularly Alzheimer's disease and Alzheimer's disease related dementias. Innate inflammatory signaling plays a critical role in this association, potentially via the early activation of the cGAS/STING pathway. To determine acute systemic metabolic and inflammatory responses and corresponding changes in the brain, we used a high fat diet fed obese mouse model of prediabetes and cognitive impairment. We observed acute systemic changes in metabolic and inflammatory responses, with impaired glucose tolerance, insulin resistance, and alterations in peripheral immune cell populations. Central inflammatory changes included microglial activation in a pro-inflammatory environment with cGAS/STING activation. Blocking gap junctions in neuron-microglial co-cultures significantly decreased cGAS/STING activation. Collectively these studies suggest a role for early activation of the innate immune system both peripherally and centrally with potential inflammatory crosstalk between neurons and glia.


Subject(s)
Alzheimer Disease , Encephalitis , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Prediabetic State , Animal Feed , Animals , Diet, High-Fat , Mice , Obesity/metabolism
6.
Front Immunol ; 13: 773288, 2022.
Article in English | MEDLINE | ID: mdl-35197969

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease with few therapeutic options. However, the immune system, including natural killer (NK) cells, is linked to ALS progression and may constitute a viable therapeutic ALS target. Tofacitinib is an FDA-approved immunomodulating small molecule which suppresses immune cell function by blocking proinflammatory cytokine signaling. This includes the cytokine IL-15 which is the primary cytokine associated with NK cell function and proliferation. However, the impact of tofacitinib on NK activation and cytotoxicity has not been thoroughly investigated, particularly in ALS. We therefore tested the ability of tofacitinib to suppress cytotoxicity and cytokine production in an NK cell line and in primary NK cells derived from control and ALS participants. We also investigated whether tofacitinib protected ALS neurons from NK cell cytotoxicity. Finally, we conducted a comprehensive pharmacokinetic study of tofacitinib in mice and tested the feasibility of administration formulated in chow. Success was assessed through the impact of tofacitinib on peripheral NK cell levels in mice. We found tofacitinib suppressed IL-15-induced activation as measured by STAT1 phosphorylation, cytotoxicity, pro-inflammatory gene expression, and pro-inflammatory cytokine secretion in both an NK cell line and primary NK cells. Furthermore, tofacitinib protected ALS neurons from NK cell-mediated cytotoxicity. In mice, we found tofacitinib bioavailability was 37% in both male and female mice; using these data we formulated mouse containing low and high doses of tofacitinib and found that the drug suppressed peripheral NK cell levels in a dose-dependent manner. These results demonstrate that tofacitinib can suppress NK cell function and may be a viable therapeutic strategy for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Animals , Apoptosis , Cytokines/metabolism , Female , Humans , Killer Cells, Natural/immunology , Male , Mice , Neurodegenerative Diseases/metabolism , Piperidines , Pyrimidines , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...