Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nat Commun ; 14(1): 5565, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689731

ABSTRACT

Many strongly correlated transition metal insulators are colored, even though they have band gaps much larger than the highest energy photons from the visible light. An adequate explanation for the color requires a theoretical approach able to compute subgap excitons in periodic crystals, reliably and without free parameters-a formidable challenge. The literature often fails to disentangle two important factors: what makes excitons form and what makes them optically bright. We pick two archetypal cases as examples: NiO with green color and MnF2 with pink color, and employ two kinds of ab initio many body Green's function theories; the first, a perturbative theory based on low-order extensions of the GW approximation, is able to explain the color in NiO, while the same theory is unable to explain why MnF2 is pink. We show its color originates from higher order spin-flip transitions that modify the optical response, which is contained in dynamical mean-field theory (DMFT). We show that symmetry lowering mechanisms may determine how 'bright' these excitons are, but they are not fundamental to their existence.

2.
Immunity ; 55(10): 1953-1966.e10, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36174557

ABSTRACT

A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Antigens, Neoplasm , Humans , Immunotherapy , Peptides
3.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36150393

ABSTRACT

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mutation , Pandemics , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
4.
Cell Rep Methods ; 2(8): 100269, 2022 08 22.
Article in English | MEDLINE | ID: mdl-36046619

ABSTRACT

B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.


Subject(s)
Adaptive Immunity , Autoimmune Diseases , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Immunologic
5.
J Phys Chem Lett ; 13(20): 4419-4425, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35549239

ABSTRACT

We present the very first density functional theory and dynamical mean field theory calculations of iron-bound human serum transferrin. Peaks in the optical conductivity at 250, 300, and 450 nm were observed, in line with experimental measurements. Spin multiplet analysis suggests that the ground state is a mixed state with high entropy, indicating the importance of strong electronic correlation in this system's chemistry.


Subject(s)
Iron , Transferrins , Entropy , Humans
6.
MAbs ; 14(1): 2031482, 2022.
Article in English | MEDLINE | ID: mdl-35377271

ABSTRACT

Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.


Subject(s)
Antigen-Antibody Reactions , Machine Learning , Antibodies, Monoclonal/chemistry , Binding Sites, Antibody , Epitopes
7.
Cell Rep ; 38(3): 110242, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34998467

ABSTRACT

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Subject(s)
Antibodies, Neutralizing/isolation & purification , Plasma Cells/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Animals , Antibodies, Viral/isolation & purification , COVID-19/immunology , COVID-19/prevention & control , Cells, Cultured , Cohort Studies , Gene Library , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , Mammals , Neutralization Tests , Peptide Library , Plasma Cells/chemistry
8.
Bioinform Adv ; 2(1): vbac062, 2022.
Article in English | MEDLINE | ID: mdl-36699357

ABSTRACT

Motivation: Single-cell sequencing now enables the recovery of full-length immune receptor repertoires [B cell receptor (BCR) and T cell receptor (TCR) repertoires], in addition to gene expression information. The feature-rich datasets produced from such experiments require extensive and diverse computational analyses, each of which can significantly influence the downstream immunological interpretations, such as clonal selection and expansion. Simulations produce validated standard datasets, where the underlying generative model can be precisely defined and furthermore perturbed to investigate specific questions of interest. Currently, there is no tool that can be used to simulate single-cell datasets incorporating immune receptor repertoires and gene expression. Results: We developed Echidna, an R package that simulates immune receptors and transcriptomes at single-cell resolution with user-tunable parameters controlling a wide range of features such as clonal expansion, germline gene usage, somatic hypermutation, transcriptional phenotypes and spatial location. Echidna can additionally simulate time-resolved B cell evolution, producing mutational networks with complex selection histories incorporating class-switching and B cell subtype information. We demonstrated the benchmarking potential of Echidna by simulating clonal lineages and comparing the known simulated networks with those inferred from only the BCR sequences as input. Finally, we simulated immune repertoire information onto existing spatial transcriptomic experiments, thereby generating novel datasets that could be used to develop and integrate methods to profile clonal selection in a spatially resolved manner. Together, Echidna provides a framework that can incorporate experimental data to simulate single-cell immune repertoires to aid software development and bioinformatic benchmarking of clonotyping, phylogenetics, transcriptomics and machine learning strategies. Availability and implementation: The R package and code used in this manuscript can be found at github.com/alexyermanos/echidna and also in the R package Platypus (Yermanos et al., 2021). Installation instructions and the vignette for Echidna is described in the Platypus Computational Ecosystem (https://alexyermanos.github.io/Platypus/index.html). Publicly available data and corresponding sample accession numbers can be found in Supplementary Tables S2 and S3. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

9.
10.
Genome Res ; 31(12): 2209-2224, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34815307

ABSTRACT

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.

11.
Front Immunol ; 12: 701085, 2021.
Article in English | MEDLINE | ID: mdl-34322127

ABSTRACT

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity , Adult , Aged , Cells, Cultured , Convalescence , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis , Transcriptome , Young Adult
12.
Nat Biomed Eng ; 5(6): 600-612, 2021 06.
Article in English | MEDLINE | ID: mdl-33859386

ABSTRACT

The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 103 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 104 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 108 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 106 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.


Subject(s)
Antigens/chemistry , Deep Learning , Protein Engineering/methods , Receptor, ErbB-2/chemistry , Trastuzumab/chemistry , Amino Acid Sequence , Animals , Antibody Affinity , Antibody Specificity , Antigens/genetics , Antigens/immunology , CRISPR-Cas Systems , Humans , Hybridomas/chemistry , Hybridomas/immunology , Mutagenesis, Site-Directed , Protein Binding , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Recombinational DNA Repair , Sequence Analysis, Protein , Trastuzumab/genetics , Trastuzumab/immunology
13.
NAR Genom Bioinform ; 3(2): lqab023, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33884369

ABSTRACT

High-throughput single-cell sequencing (scSeq) technologies are revolutionizing the ability to molecularly profile B and T lymphocytes by offering the opportunity to simultaneously obtain information on adaptive immune receptor repertoires (VDJ repertoires) and transcriptomes. An integrated quantification of immune repertoire parameters, such as germline gene usage, clonal expansion, somatic hypermutation and transcriptional states opens up new possibilities for the high-resolution analysis of lymphocytes and the inference of antigen-specificity. While multiple tools now exist to investigate gene expression profiles from scSeq of transcriptomes, there is a lack of software dedicated to single-cell immune repertoires. Here, we present Platypus, an open-source software platform providing a user-friendly interface to investigate B-cell receptor and T-cell receptor repertoires from scSeq experiments. Platypus provides a framework to automate and ease the analysis of single-cell immune repertoires while also incorporating transcriptional information involving unsupervised clustering, gene expression and gene ontology. To showcase the capabilities of Platypus, we use it to analyze and visualize single-cell immune repertoires and transcriptomes from B and T cells from convalescent COVID-19 patients, revealing unique insight into the repertoire features and transcriptional profiles of clonally expanded lymphocytes. Platypus will expedite progress by facilitating the analysis of single-cell immune repertoire and transcriptome sequencing.

14.
Cell Rep ; 34(11): 108856, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730590

ABSTRACT

Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.


Subject(s)
Antigen-Antibody Reactions/immunology , Binding Sites, Antibody/immunology , Epitopes/immunology , Amino Acid Motifs , Amino Acid Sequence , Antibodies/chemistry , Antibodies/immunology , Complementarity Determining Regions/chemistry , Epitopes/chemistry , Machine Learning , Protein Binding
15.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Article in English | MEDLINE | ID: mdl-37396030

ABSTRACT

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

16.
Nat Comput Sci ; 1(6): 410-420, 2021 Jun.
Article in English | MEDLINE | ID: mdl-38217238

ABSTRACT

Quantum computing opens new avenues for modeling correlated materials, which are notoriously challenging to solve due to the presence of large electronic correlations. Quantum embedding approaches, such as dynamical mean-field theory, provide corrections to first-principles calculations for strongly correlated materials, which are poorly described at lower levels of theory. Such embedding approaches are computationally demanding on classical computing architectures and hence remain restricted to small systems, limiting the scope of their applicability. Hitherto, implementations on quantum computers have been limited by hardware constraints. Here, we derive a compact representation, where the number of quantum states is reduced for a given system while retaining a high level of accuracy. We benchmark our method for archetypal quantum states of matter that emerge due to electronic correlations, such as Kondo and Mott physics, both at equilibrium and for quenched systems. We implement this approach on a quantum emulator, demonstrating a reduction of the required number of qubits.

17.
J Chem Theory Comput ; 16(8): 4899-4911, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32433876

ABSTRACT

We introduce the unification of dynamical mean field theory (DMFT) and linear-scaling density functional theory (DFT), as recently implemented in ONETEP, a linear-scaling DFT package, and TOSCAM, a DMFT toolbox. This code can account for strongly correlated electronic behavior while simultaneously including the effects of the environment, making it ideally suited for studying complex and heterogeneous systems that contain transition metals and lanthanides, such as metalloproteins. We systematically introduce the necessary formalism, which must account for the nonorthogonal basis set used by ONETEP. In order to demonstrate the capabilities of this code, we apply it to carbon monoxide ligated iron porphyrin and explore the distinctly quantum-mechanical character of the iron 3d electrons during the process of photodissociation.

18.
Bioinformatics ; 36(11): 3594-3596, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32154832

ABSTRACT

SUMMARY: B- and T-cell receptor repertoires of the adaptive immune system have become a key target for diagnostics and therapeutics research. Consequently, there is a rapidly growing number of bioinformatics tools for immune repertoire analysis. Benchmarking of such tools is crucial for ensuring reproducible and generalizable computational analyses. Currently, however, it remains challenging to create standardized ground truth immune receptor repertoires for immunoinformatics tool benchmarking. Therefore, we developed immuneSIM, an R package that allows the simulation of native-like and aberrant synthetic full-length variable region immune receptor sequences by tuning the following immune receptor features: (i) species and chain type (BCR, TCR, single and paired), (ii) germline gene usage, (iii) occurrence of insertions and deletions, (iv) clonal abundance, (v) somatic hypermutation and (vi) sequence motifs. Each simulated sequence is annotated by the complete set of simulation events that contributed to its in silico generation. immuneSIM permits the benchmarking of key computational tools for immune receptor analysis, such as germline gene annotation, diversity and overlap estimation, sequence similarity, network architecture, clustering analysis and machine learning methods for motif detection. AVAILABILITY AND IMPLEMENTATION: The package is available via https://github.com/GreiffLab/immuneSIM and on CRAN at https://cran.r-project.org/web/packages/immuneSIM. The documentation is hosted at https://immuneSIM.readthedocs.io. CONTACT: sai.reddy@ethz.ch or victor.greiff@medisin.uio.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Benchmarking , Software , Computer Simulation , Receptors, Antigen, T-Cell/genetics
19.
Proc Natl Acad Sci U S A ; 117(12): 6409-6416, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32161128

ABSTRACT

The role of the crystal lattice for the electronic properties of cuprates and other high-temperature superconductors remains controversial despite decades of theoretical and experimental efforts. While the paradigm of strong electronic correlations suggests a purely electronic mechanism behind the insulator-to-metal transition, recently the mutual enhancement of the electron-electron and the electron-phonon interaction and its relevance to the formation of the ordered phases have also been emphasized. Here, we combine polarization-resolved ultrafast optical spectroscopy and state-of-the-art dynamical mean-field theory to show the importance of the crystal lattice in the breakdown of the correlated insulating state in an archetypal undoped cuprate. We identify signatures of electron-phonon coupling to specific fully symmetric optical modes during the buildup of a three-dimensional (3D) metallic state that follows charge photodoping. Calculations for coherently displaced crystal structures along the relevant phonon coordinates indicate that the insulating state is remarkably unstable toward metallization despite the seemingly large charge-transfer energy scale. This hitherto unobserved insulator-to-metal transition mediated by fully symmetric lattice modes can find extensive application in a plethora of correlated solids.

20.
Nucleic Acids Res ; 46(14): 7436-7449, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29931269

ABSTRACT

Antibody engineering is often performed to improve therapeutic properties by directed evolution, usually by high-throughput screening of phage or yeast display libraries. Engineering antibodies in mammalian cells offer advantages associated with expression in their final therapeutic format (full-length glycosylated IgG); however, the inability to express large and diverse libraries severely limits their potential throughput. To address this limitation, we have developed homology-directed mutagenesis (HDM), a novel method which extends the concept of CRISPR/Cas9-mediated homology-directed repair (HDR). HDM leverages oligonucleotides with degenerate codons to generate site-directed mutagenesis libraries in mammalian cells. By improving HDR to a robust efficiency of 15-35% and combining mammalian display screening with next-generation sequencing, we validated this approach can be used for key applications in antibody engineering at high-throughput: rational library construction, novel variant discovery, affinity maturation and deep mutational scanning (DMS). We anticipate that HDM will be a valuable tool for engineering and optimizing antibodies in mammalian cells, and eventually enable directed evolution of other complex proteins and cellular therapeutics.


Subject(s)
Antibodies/immunology , CRISPR-Cas Systems , Mutagenesis, Site-Directed , Protein Engineering/methods , Amino Acid Sequence , Animals , Antibodies/genetics , Antibodies/metabolism , Antibody Affinity/genetics , Antibody Affinity/immunology , Base Sequence , Cell Line , DNA Breaks, Double-Stranded , High-Throughput Nucleotide Sequencing/methods , Humans , Hybridomas , Oligonucleotides/genetics , Oligonucleotides/metabolism , Recombinational DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL
...