Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 228: 117692, 2021 03.
Article in English | MEDLINE | ID: mdl-33385546

ABSTRACT

Diffusion MRI (dMRI) represents one of the few methods for mapping brain fiber orientations non-invasively. Unfortunately, dMRI fiber mapping is an indirect method that relies on inference from measured diffusion patterns. Comparing dMRI results with other modalities is a way to improve the interpretation of dMRI data and help advance dMRI technologies. Here, we present methods for comparing dMRI fiber orientation estimates with optical imaging of fluorescently labeled neurofilaments and vasculature in 3D human and primate brain tissue cuboids cleared using CLARITY. The recent advancements in tissue clearing provide a new opportunity to histologically map fibers projecting in 3D, which represents a captivating complement to dMRI measurements. In this work, we demonstrate the capability to directly compare dMRI and CLARITY in the same human brain tissue and assess multiple approaches for extracting fiber orientation estimates from CLARITY data. We estimate the three-dimensional neuronal fiber and vasculature orientations from neurofilament and vasculature stained CLARITY images by calculating the tertiary eigenvector of structure tensors. We then extend CLARITY orientation estimates to an orientation distribution function (ODF) formalism by summing multiple sub-voxel structure tensor orientation estimates. In a sample containing part of the human thalamus, there is a mean angular difference of 19o±15o between the primary eigenvectors of the dMRI tensors and the tertiary eigenvectors from the CLARITY neurofilament stain. We also demonstrate evidence that vascular compartments do not affect the dMRI orientation estimates by showing an apparent lack of correspondence (mean angular difference = 49o±23o) between the orientation of the dMRI tensors and the structure tensors in the vasculature stained CLARITY images. In a macaque brain dataset, we examine how the CLARITY feature extraction depends on the chosen feature extraction parameters. By varying the volume of tissue over which the structure tensor estimates are derived, we show that orientation estimates are noisier with more spurious ODF peaks for sub-voxels below 30 µm3 and that, for our data, the optimal gray matter sub-voxel size is between 62.5 µm3 and 125 µm3. The example experiments presented here represent an important advancement towards robust multi-modal MRI-CLARITY comparisons.


Subject(s)
Brain/anatomy & histology , Gray Matter/anatomy & histology , Image Processing, Computer-Assisted/methods , Multimodal Imaging/methods , Neuroimaging/methods , White Matter/anatomy & histology , Animals , Diffusion Magnetic Resonance Imaging/methods , Humans , Imaging, Three-Dimensional/methods , Macaca , Optical Imaging/methods
2.
Phys Chem Chem Phys ; 19(24): 16087-16094, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28598474

ABSTRACT

We report the observation of anisotropic longitudinal electronic relaxation in nitroxide radicals under typical dynamic nuclear polarization conditions. This anisotropy affects the efficiency of dynamic nuclear polarization at cryogenic temperatures of 4 K and high magnetic fields of 6.7 T. Under our experimental conditions, the electron paramagnetic resonance spectrum of nitroxides such as TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) is only partly averaged by electronic spectral diffusion, so that the relaxation times T1e(ω) vary across the spectrum. We demonstrate how the anisotropy of T1e(ω) can be taken into account in simple DNP models.

SELECTION OF CITATIONS
SEARCH DETAIL
...