Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 6: 1278118, 2023.
Article in English | MEDLINE | ID: mdl-38106982

ABSTRACT

The accurate and comprehensive mapping of land cover has become a central task in modern environmental research, with increasing emphasis on machine learning approaches. However, a clear technical definition of the land cover class is a prerequisite for learning and applying a machine learning model. One of the challenging classes is naturalness and human influence, yet mapping it is important due to its critical role in biodiversity conservation, habitat assessment, and climate change monitoring. We present an interpretable machine learning approach to map patterns related to territorial protected and anthropogenic areas as proxies of naturalness and human influence using satellite imagery. To achieve this, we train a weakly-supervised convolutional neural network and subsequently apply attribution methods such as Grad-CAM and occlusion sensitivity mapping. We propose a novel network architecture that consists of an image-to-image network and a shallow, task-specific head. Both sub-networks are connected by an intermediate layer that captures high-level features in full resolution, allowing for detailed analysis with a wide range of attribution methods. We further analyze how intermediate layer activations relate to their attributions across the training dataset to establish a consistent relationship. This makes attributions consistent across different scenes and allows for a large-scale analysis of remote sensing data. The results highlight that our approach is a promising way to observe and assess naturalness and territorial protection.

2.
Front Artif Intell ; 5: 830026, 2022.
Article in English | MEDLINE | ID: mdl-35402903

ABSTRACT

The need for accurate yield estimates for viticulture is becoming more important due to increasing competition in the wine market worldwide. One of the most promising methods to estimate the harvest is berry counting, as it can be approached non-destructively, and its process can be automated. In this article, we present a method that addresses the challenge of occluded berries with leaves to obtain a more accurate estimate of the number of berries that will enable a better estimate of the harvest. We use generative adversarial networks, a deep learning-based approach that generates a highly probable scenario behind the leaves exploiting learned patterns from images with non-occluded berries. Our experiments show that the estimate of the number of berries after applying our method is closer to the manually counted reference. In contrast to applying a factor to the berry count, our approach better adapts to local conditions by directly involving the appearance of the visible berries. Furthermore, we show that our approach can identify which areas in the image should be changed by adding new berries without explicitly requiring information about hidden areas.

3.
Sensors (Basel) ; 19(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847146

ABSTRACT

Short-wave infrared (SWIR) imaging systems with unmanned aerial vehicles (UAVs) are rarely used for remote sensing applications, like for vegetation monitoring. The reasons are that in the past, sensor systems covering the SWIR range were too expensive, too heavy, or not performing well enough, as, in contrast, it is the case in the visible and near-infrared range (VNIR). Therefore, our main objective is the development of a novel modular two-channel multispectral imaging system with a broad spectral sensitivity from the visible to the short-wave infrared spectrum (approx. 400 nm to 1700 nm) that is compact, lightweight and energy-efficient enough for UAV-based remote sensing applications. Various established vegetation indices (VIs) for mapping vegetation traits can then be set up by selecting any suitable filter combination. The study describes the selection of the individual components, starting with suitable camera modules, the optical as well as the control and storage parts. Special bandpass filters are used to select the desired wavelengths to be captured. A unique flange system has been developed, which also allows the filters to be interchanged quickly in order to adapt the system to a new application in a short time. The characterization of the system was performed in the laboratory with an integrating sphere and a climatic chamber. Finally, the integration of the novel modular VNIR/SWIR imaging system into a UAV and a subsequent first outdoor test flight, in which the functionality was tested, are described.

SELECTION OF CITATIONS
SEARCH DETAIL
...