Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mayo Clin Proc ; 99(2): 206-217, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127015

ABSTRACT

OBJECTIVE: To determine whether nitrite can enhance exercise training (ET) effects in heart failure with preserved ejection fraction (HFpEF). METHODS: In this multicenter, double-blind, placebo-controlled, randomized trial conducted at 1 urban and 9 rural outreach centers between November 22, 2016, and December 9, 2021, patients with HFpEF underwent ET along with inorganic nitrite 40 mg or placebo 3 times daily. The primary end point was peak oxygen consumption (VO2). Secondary end points included Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OSS, range 0 to 100; higher scores reflect better health status), 6-minute walk distance, and actigraphy. RESULTS: Of 92 patients randomized, 73 completed the trial because of protocol modifications necessitated by loss of drug availability. Most patients were older than 65 years (80%), were obese (75%), and lived in rural settings (63%). At baseline, median peak VO2 (14.1 mL·kg-1·min-1) and KCCQ-OSS (63.7) were severely reduced. Exercise training improved peak VO2 (+0.8 mL·kg-1·min-1; 95% CI, 0.3 to 1.2; P<.001) and KCCQ-OSS (+5.5; 95% CI, 2.5 to 8.6; P<.001). Nitrite was well tolerated, but treatment with nitrite did not affect the change in peak VO2 with ET (nitrite effect, -0.13; 95% CI, -1.03 to 0.76; P=.77) or KCCQ-OSS (-1.2; 95% CI, -7.2 to 4.9; P=.71). This pattern was consistent across other secondary outcomes. CONCLUSION: For patients with HFpEF, ET administered for 12 weeks in a predominantly rural setting improved exercise capacity and health status, but compared with placebo, treatment with inorganic nitrite did not enhance the benefit from ET. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02713126.


Subject(s)
Heart Failure , Humans , Heart Failure/drug therapy , Nitrites/pharmacology , Nitrites/therapeutic use , Stroke Volume , Exercise , Health Status , Quality of Life , Exercise Tolerance
2.
J Cell Sci ; 120(Pt 20): 3625-32, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17928307

ABSTRACT

Although the role of the actin cytoskeleton in morphogenesis of polarized epithelial sheets is generally accepted as centrally important, the regulation of actin dynamics in this process remains unclear. Here, we show that the pointed-end capping protein Tmod3 contributes to epithelial cell shape within confluent monolayers of polarized epithelial cells. Tmod3 localizes to lateral cell membranes in polarized epithelia of several cell types. Reduction of Tmod3 levels by shRNA leads to a loss of F-actin and tropomyosins from lateral cell membranes, and a decrease in epithelial cell height, without effects on localisation of tight junction or adherens junction proteins, or any apparent changes in cell-cell adhesion. Instead, distribution of alphaII-spectrin on lateral membranes is disrupted upon reduction of Tmod3 levels, suggesting that loss of Tmod3 function leads to destabilization and disassembly of tropomyosin-coated actin filaments followed by disorganization of the spectrin-based membrane skeleton on lateral membranes. These data demonstrate for the first time a role for pointed-end capping in morphology regulation of polarized epithelial cells through stabilization of F-actin on lateral membranes. We propose that Tmod3-capped tropomyosin-actin filaments provide crucial links in the spectrin membrane skeleton of polarized epithelial cells, enabling the membrane skeleton to maintain cell shape.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Polarity , Epithelial Cells/cytology , Epithelial Cells/metabolism , Spectrin/metabolism , Tropomodulin/metabolism , Actin Cytoskeleton/ultrastructure , Caco-2 Cells , Cadherins/metabolism , Cell Line , Cell Membrane/metabolism , Cell Shape , Cytoskeleton/metabolism , Epithelial Cells/ultrastructure , Humans , Molecular Sequence Data , Tropomodulin/isolation & purification , Tropomyosin/metabolism
3.
J Biol Chem ; 281(47): 36454-65, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-17012745

ABSTRACT

Regulation of the actin cytoskeleton by filament capping proteins is critical to myriad dynamic cellular functions. The ability of these proteins to bind both filaments as well as monomers is often central to their cellular functions. The ubiquitous pointed end capping protein Tmod3 (tropomodulin 3) acts as a negative regulator of cell migration, yet mechanisms behind its cellular functions are not understood. Analysis of Tmod3 effects on kinetics of actin polymerization and steady state monomer levels revealed that Tmod3, unlike previously characterized tropomodulins, sequesters actin monomers with an affinity similar to its affinity for capping pointed ends. Furthermore, Tmod3 is found bound to actin in high speed supernatant cytosolic extracts, suggesting that Tmod3 can bind to monomers in the context of other cytosolic monomer binding proteins. The Tmod3-actin complex can be efficiently cross-linked with 1-ethyl-3-(dimethylaminopropyl)carbodiimide/N-hydroxylsulfosuccinimide in a 1:1 complex. Subsequent tryptic digestion and liquid chromatography/tandem mass spectrometry revealed two binding interfaces on actin, one distinct from other actin monomer binding proteins, and two potential binding sites in Tmod3, which are independent of the previously characterized leucine-rich repeat structure involved in pointed end capping. These data suggest that the Tmod3 isoform may regulate actin dynamics differently in cells than the previously described tropomodulin isoforms.


Subject(s)
Actins/chemistry , Tropomodulin/physiology , Amino Acid Sequence , Animals , Cell Movement , Cross-Linking Reagents/pharmacology , Cytoplasm/metabolism , Cytoskeleton/metabolism , Cytosol/metabolism , Models, Molecular , Molecular Sequence Data , Muscle, Skeletal/metabolism , Protein Binding , Protein Isoforms , Rabbits
4.
Nature ; 431(7006): 325-9, 2004 Sep 16.
Article in English | MEDLINE | ID: mdl-15372037

ABSTRACT

Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule-actin filament (F-actin) interactions in many systems. Such interactions are particularly important in meiosis, where they mediate nuclear anchoring, as well as meiotic spindle assembly and rotation, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle-F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.


Subject(s)
Cell Nucleus/metabolism , Meiosis/physiology , Microtubules/metabolism , Myosins/metabolism , Spindle Apparatus/chemistry , Spindle Apparatus/metabolism , Xenopus Proteins/metabolism , Actins/metabolism , Animals , Cell Nucleus/chemistry , Microtubules/chemistry , Myosins/chemistry , Protein Binding , Protein Structure, Tertiary , Xenopus Proteins/chemistry , Xenopus laevis
5.
J Cell Sci ; 115(Pt 7): 1373-82, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-11896185

ABSTRACT

The microtubule, F-actin, and intermediate filament systems are often studied as isolated systems, yet the three display mutual interdependence in living cells. To overcome limitations inherent in analysis of polymer-polymer interactions in intact cells, associations between these systems were assessed in Xenopus egg extracts. In both fixed and unfixed extract preparations, cytokeratin associated with F-actin cables that spontaneously assembled in the extracts. Time-course experiments revealed that at early time points cytokeratin cables were invariably associated with F-actin cables, while at later time points they could be found without associated F-actin. In extract samples where F-actin assembly was prevented, cytokeratin formed unorganized aggregates rather than cables. Dynamic imaging revealed transport of cytokeratin by moving F-actin as well as examples of cytokeratin release from F-actin. Experimental alteration of F-actin network organization by addition of alpha-actinin resulted in a corresponding change in the organization of the cytokeratin network. Finally, pharmacological disruption of the F-actin network in intact, activated eggs disrupted the normal pattern of cytokeratin assembly. These results provide direct evidence for an association between F-actin and cytokeratin in vitro and in vivo, and indicate that this interaction is necessary for proper cytokeratin assembly after transition into the first mitotic interphase of Xenopus.


Subject(s)
Actins/metabolism , Cell Extracts/chemistry , Intermediate Filaments/ultrastructure , Keratins/analysis , Animals , Cell-Free System , Female , Intermediate Filaments/chemistry , Keratins/metabolism , Microtubule Proteins/chemistry , Microtubules/chemistry , Microtubules/metabolism , Oocytes/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...