Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Spinal Cord Med ; : 1-9, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958637

ABSTRACT

CONTEXT/OBJECTIVE: There is a growing global interest in quantifying spinal cord lesions and spared neural tissue using magnetic resonance imaging (MRI) in individuals with spinal cord injury (SCI). The primary objective of this study was to assess the relationships between spinal cord lesion characteristics assessed on MRI and bowel, bladder, and overall independence following SCI. DESIGN: Retrospective, exploratory study. PARTICIPANTS: 93 individuals with cervical SCI who were enrolled in a local United States Model Systems SCI database from 2010 to 2017. METHODS: Clinical and MRI data were obtained for potential participants, and MRIs of eligible participants were analyzed. Explanatory variables, captured on MRIs, included intramedullary lesion length (IMLL), midsagittal ventral tissue bridge width (VTBW), midsagittal dorsal tissue bridge width (DTBW), and axial damage ratio (ADR). OUTCOME MEASURES: Bowel and bladder management scale of the Functional Independence Measure (FIM) and FIM total motor score. RESULTS: When accounting for all four variables, only ADR was significantly associated with bowel independence (OR = 0.970, 95% CI: 0.942-0.997, P = 0.030), and both ADR and IMLL were strongly associated with bladder independence (OR = 0.967, 95% CI: 0.936-0.999, P = 0.046 and OR = 0.948, 95% CI: 0.919-0.978, P = 0.0007, respectively). 32% of the variation in overall independence scores were explained by all four predictive variables, but only ADR was significantly associated with overall independence after accounting for all other predictive variables (ß = -0.469, 95% CI: -0.719, -0.218, P = 0.0004). CONCLUSIONS: Our results suggest that the MRI-measured extent of spinal cord lesion may be predictive of bowel, bladder, and overall independence following cervical SCI.

2.
Spinal Cord Ser Cases ; 10(1): 44, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977671

ABSTRACT

STUDY DESIGN: prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES: to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING: University laboratory setting. METHODS: Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS: In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS: Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.


Subject(s)
Disease Models, Animal , Magnetic Resonance Imaging , Spinal Cord Injuries , Swine, Miniature , Animals , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Swine , Magnetic Resonance Imaging/methods , Humans , Female , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Male , Behavior, Animal/physiology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Spinal Cord/physiopathology , Recovery of Function/physiology , Prospective Studies , Locomotion/physiology
3.
Lancet Neurol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38945142

ABSTRACT

BACKGROUND: The accuracy of prognostication in patients with cervical spinal cord injury (SCI) needs to be improved. We aimed to explore the prognostic value of preserved spinal tissue bridges-injury-spared neural tissue adjacent to the lesion-for prediction of sensorimotor recovery in a large, multicentre cohort of people with SCI. METHODS: For this longitudinal study, we included patients with acute cervical SCI (vertebrae C1-C7) admitted to one of three trauma or rehabilitation centres: Murnau, Germany (March 18, 2010-March 1, 2021); Zurich, Switzerland (May 12, 2002-March 2, 2019); and Denver, CO, USA (Jan 12, 2010-Feb 16, 2017). Patients were clinically assessed at admission (baseline), at discharge (3 months), and at 12 months post SCI. Midsagittal tissue bridges were quantified from T2-weighted images assessed at 3-4 weeks post SCI. Fractional regression and unbiased recursive partitioning models, adjusted for age, sex, centre, and neurological level of injury, were used to assess associations between tissue bridge width and baseline-adjusted total motor score, pinprick score, and light touch scores at 3 months and 12 months. Patients were stratified into subgroups according to whether they showed better or worse predicted recovery. FINDINGS: The cohort included 227 patients: 93 patients from Murnau (22 [24%] female); 43 patients from Zurich (four [9%] female); and 91 patients from Denver (14 [15%] female). 136 of these participants (from Murnau and Zurich) were followed up for up to 12 months. At 3 months, per preserved 1 mm of tissue bridge at baseline, patients recovered a mean of 9·3% (SD 0·9) of maximal total motor score (95% CI 7·5-11.2), 8·6% (0·8) of maximal pinprick score (7·0-10·1), and 10·9% (0·8) of maximal light touch score (9·4-12·5). At 12 months post SCI, per preserved 1 mm of tissue bridge at baseline, patients recovered a mean of 10·9% (1·3) of maximal total motor score (8·4-13·4), 5·7% (1·3) of maximal pinprick score (3·3-8·2), and 6·9% (1·4) of maximal light touch score (4·1-9·7). Partitioning models identified a tissue bridge cutoff width of 2·0 mm to be indicative of higher or lower 3-month total motor, pinprick, and light touch scores, and a cutoff of 4·0 mm to be indicative of higher and lower 12-month scores. Compared with models that contained clinical predictors only, models additionally including tissue bridges had significantly improved prediction accuracy across all three centres. INTERPRETATION: Tissue bridges, measured in the first few weeks after SCI, are associated with short-term and long-term clinical improvement. Thus, tissue bridges could potentially be used to guide rehabilitation decision making and to stratify patients into more homogeneous subgroups of recovery in regenerative and neuroprotective clinical trials. FUNDING: Wings for Life, International Foundation for Research in Paraplegia, EU project Horizon 2020 (NISCI grant), and ERA-NET NEURON.

4.
medRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38699309

ABSTRACT

Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted intramedullary lesions in spinal cord injury (SCI). Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The data consisted of T2-weighted MRI acquired using different scanner manufacturers with heterogeneous image resolutions (isotropic/anisotropic), orientations (axial/sagittal), lesion etiologies (traumatic/ischemic/hemorrhagic) and lesions spread across the cervical, thoracic and lumbar spine. The segmentations from the proposed model were visually and quantitatively compared with other open-source baselines. Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual lesion masks and those obtained automatically with SCIseg predictions. Results: MRI data from 191 SCI patients (mean age, 48.1 years ± 17.9 [SD]; 142 males) were used for model training and evaluation. SCIseg achieved the best segmentation performance for both the cord and lesions. There was no statistically significant difference between lesion length and maximal axial damage ratio computed from manually annotated lesions and those obtained using SCIseg. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model segments lesions across different etiologies, scanner manufacturers, and heterogeneous image resolutions. SCIseg is open-source and accessible through the Spinal Cord Toolbox.

6.
J Clin Med ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38592158

ABSTRACT

Background: Percutaneous spinal cord epidural stimulation (pSCES) has effectively restored varying levels of motor control in persons with motor complete spinal cord injury (SCI). Studying and standardizing the pSCES configurations may yield specific motor improvements. Previously, reliance on the amplitude of the SCES-evoked potentials (EPs) was used to determine the correct stimulation configurations. Methods: We, hereby, retrospectively examined the effects of wide and narrow-field configurations on establishing the motor recruitment curves of motor units of three different agonist-antagonist muscle groups. Magnetic resonance imaging was also used to individualize SCI participants (n = 4) according to their lesion characteristics. The slope of the recruitment curves using a six-degree polynomial function was calculated to derive the slope ratio for the agonist-antagonist muscle groups responsible for standing. Results: Axial damage ratios of the spinal cord ranged from 0.80 to 0.92, indicating at least some level of supraspinal connectivity for all participants. Despite the close range of these ratios, standing motor performance was enhanced using different stimulation configurations in the four persons with SCI. A slope ratio of ≥1 was considered for the recommended configurations necessary to achieve standing. The retrospectively identified configurations using the supine slope ratio of the recruitment curves of the motor units agreed with that visually inspected muscle EPs amplitude of the extensor relative to the flexor muscles in two of the four participants. Two participants managed to advance the selected configurations into independent standing performance after using tonic stimulation. The other two participants required different levels of assistance to attain standing performance. Conclusions: The findings suggest that the peak slope ratio of the muscle agonists-antagonists recruitment curves may potentially identify the pSCES configurations necessary to achieve standing in persons with SCI.

7.
Front Bioeng Biotechnol ; 12: 1337808, 2024.
Article in English | MEDLINE | ID: mdl-38681963

ABSTRACT

Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing cervical spondylosis, providing detailed visualization of osseous and soft tissue structures in the cervical spine. However, manual measurements hinder the assessment of cervical spine sagittal balance, leading to time-consuming and error-prone processes. This study presents the Pyramid DBSCAN Simple Linear Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral bodies in T2-weighted MR images, aiming to streamline sagittal balance assessment for spinal surgeons. Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with DBSCAN clustering and underwent rigorous testing using an extensive dataset of T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in China. The efficacy of PDB-SLIC was compared against other algorithms and networks in terms of superpixel segmentation quality and vertebral body segmentation accuracy. Validation included a comparative analysis of manual and automated measurements of cervical sagittal parameters and scrutiny of PDB-SLIC's measurement stability across diverse hospital settings and MR scanning machines. Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was observed compared to manual measurements, with correlation coefficients exceeding 95%. PDB-SLIC demonstrated commendable performance in processing cervical spine T2-weighted MR images from various hospital settings, MRI machines, and patient demographics. Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and efficient tool for evaluating cervical spine sagittal balance, providing valuable assistance to spinal surgeons in preoperative assessment, surgical strategy formulation, and prognostic inference. Additionally, it facilitates comprehensive measurement of sagittal balance parameters across diverse patient cohorts, contributing to the establishment of normative standards for cervical spine MR imaging.

8.
Behav Sci (Basel) ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540549

ABSTRACT

INTRODUCTION: Employment is an important contributor to recovery in people with serious mental illness (SMI), yet studies have not explored how subjective elements of employment hope contribute to perceptions of global recovery in this population. METHODS: The current study examined the relationship between employment hope and subjective recovery in 276 unemployed adults with SMI participating in a multi-site clinical trial of a cognitive behavioral group intervention tailored toward work and combined with vocational rehabilitation. Participants had diagnoses of schizophrenia spectrum, bipolar, depressive, and posttraumatic stress disorders, and were receiving services at three Veterans Affairs healthcare facilities in the United States. Data were collected at study baseline. Linear regression analysis examined the relationship between employment hope (Short Employment Hope Scale; EHS-14) and subjective recovery (Recovery Assessment Scale; RAS) after controlling for psychiatric symptom severity and mental-health-related burden on daily life. RESULTS: After accounting for covariates, employment hope significantly contributed to the regression model explaining subjective recovery. The overall model of predictor variables explained 52.5% of the variance in recovery. The results further explore the relationships between EHS-14 and RAS subscales. CONCLUSIONS: The findings suggest that employment hope is a key intervention target to bolster subjective recovery in this vulnerable population.

9.
Spine J ; 24(7): 1253-1266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38417587

ABSTRACT

BACKGROUND CONTEXT: The role of lumbar paraspinal muscle health in back pain (BP) is not straightforward. Challenges in this field have included the lack of tools and large, heterogenous datasets to interrogate the association between muscle health and BP. Computer-vision models have been transformative in this space, enabling the automated quantification of muscle health and the processing of large datasets. PURPOSE: To investigate the associations between lumbar paraspinal muscle health and age, sex, BMI, physical activity, and BP in a large, heterogenous dataset using an automated computer-vision model. DESIGN: Cross-sectional study. PATIENT SAMPLE: Participants from the UK Biobank with abdominal Dixon fat-water MRI (N=9,564) were included (41.8% women, mean [SD] age: 63.5 [7.6] years, BMI: 26.4 [4.1] kg/m2) of whom 6,953 reported no pain, 930 acute BP, and 1,681 chronic BP. OUTCOME MEASURES: Intramuscular fat (IMF) and average cross-sectional area (aCSA) were automatically derived using a computer-vision model for the left and right lumbar multifidus (LM), erector spinae (ES), and psoas major (PM) from the L1 to L5 vertebral levels. METHODS: Two-tailed partial Pearson correlations were generated for each muscle to assess the relationships between the muscle measures (IMF and aCSA) and age (controlling for BMI, sex, and physical activity), BMI (controlling for age, sex, and physical activity), and physical activity (controlling for age, sex, and BMI). One-way ANCOVA was used to identify sex differences in IMF and aCSA for each muscle while controlling for age, BMI, and physical activity. Similarly, one-way ANCOVA was used to identify between-group differences (no pain, acute BP, and chronic BP) for each muscle and along the superior-inferior expanse of the lumbar spine while controlling for age, BMI, sex, and physical activity (α=0.05). RESULTS: Females had higher IMF (LM mean difference [MD]=11.1%, ES MD=10.2%, PM MD=0.3%, p<.001) and lower aCSA (LM MD=47.6 mm2, ES MD=350.0 mm2, PM MD=321.5 mm2, p<.001) for all muscles. Higher age was associated with higher IMF and lower aCSA for all muscles (r≥0.232, p<.001) except for LM and aCSA (r≤0.013, p≥.267). Higher BMI was associated with higher IMF and aCSA for all muscles (r≥0.174, p<.001). Higher physical activity was associated with lower IMF and higher aCSA for all muscles (r≥0.036, p≤.002) except for LM and aCSA (r≤0.010, p≥.405). People with chronic BP had higher IMF and lower aCSA than people with no pain (IMF MD≤1.6%, aCSA MD≤27.4 mm2, p<.001) and higher IMF compared to acute BP (IMF MD≤1.1%, p≤.044). The differences between people with BP and people with no pain were not spatially localized to the inferior lumbar levels but broadly distributed across the lumbar spine. CONCLUSIONS: Paraspinal muscle health is associated with age, BMI, sex, and physical activity with the exception of the association between LM aCSA and age and physical activity. People with BP (chronic>acute) have higher IMF and lower aCSA than people reporting no pain. The differences were not localized but broadly distributed across the lumbar spine. When interpreting measures of paraspinal muscle health in the research or clinical setting, the associations with age, BMI, sex, and physical activity should be considered.


Subject(s)
Body Mass Index , Exercise , Paraspinal Muscles , Humans , Female , Male , Middle Aged , Paraspinal Muscles/diagnostic imaging , Aged , United Kingdom , Exercise/physiology , Cross-Sectional Studies , Age Factors , Magnetic Resonance Imaging , Sex Factors , Lumbosacral Region , Back Pain/physiopathology , Back Pain/epidemiology , Lumbar Vertebrae/diagnostic imaging , Low Back Pain/physiopathology , UK Biobank
10.
Arch Phys Med Rehabil ; 105(1): 10-19, 2024 01.
Article in English | MEDLINE | ID: mdl-37414239

ABSTRACT

OBJECTIVE: To derive and validate a simple, accurate CPR to predict future independent walking ability after SCI at the bedside that does not rely on motor scores and is predictive for those initially classified in the middle of the SCI severity spectrum. DESIGN: Retrospective cohort study. Binary variables were derived, indicating degrees of sensation to evaluate predictive value of pinprick and light touch variables across dermatomes. The optimal single sensory modality and dermatome was used to derive our CPR, which was validated on an independent dataset. SETTING: Analysis of SCI Model Systems dataset. PARTICIPANTS: Individuals with traumatic SCI. The data of 3679 participants (N=3679) were included with 623 participants comprising the derivation dataset and 3056 comprising the validation dataset. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Self-reported ability to walk both indoors and outdoors. RESULTS: Pinprick testing at S1 over lateral heels, within 31 days of SCI, accurately identified future independent walkers 1 year after SCI. Normal pinprick in both lateral heels provided good prognosis, any pinprick sensation in either lateral heel provided fair prognosis, and no sensation provided poor prognosis. This CPR performed satisfactorily in the middle SCI severity subgroup. CONCLUSIONS: In this large multi-site study, we derived and validated a simple, accurate CPR using only pinprick sensory testing at lateral heels that predicts future independent walking after SCI.


Subject(s)
Clinical Decision Rules , Spinal Cord Injuries , Humans , Neurologic Examination , Retrospective Studies , Walking
11.
Eur Spine J ; 33(1): 133-154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926719

ABSTRACT

PURPOSE: Cervical Spondylotic Myelopathy (CSM) is a degenerative condition that leads to loss of cervical spinal cord (CSC) integrity. Various spinal cord Magnetic Resonance Imaging (MRI) methods can identify and characterize the extent of this damage. This systematic review aimed to evaluate the diagnostic, biomarker, and predictive utilities of different spinal cord MRI methods in clinical research studies of CSM. The aim was to provide a comprehensive understanding of the progress in this direction for future studies and effective diagnosis and management of CSM. METHODS: A comprehensive literature search was conducted on PubMed and EMBASE from 2010 to 2022 according to PRISMA guidelines. Studies with non-human subjects, less than 3T magnetic field strength, non-clinical design, or not quantitatively focusing on the structural integrity of CSC were excluded. The extracted data from each study included demographics, disease severity, MRI machine characteristics, quantitative metrics, and key findings in terms of diagnostic, biomarker, and predictive utilities of each MRI method. The risk of bias was performed using the guide from AHRQ. The quality of evidence was assessed separately for each type of utility for different MRI methods using GRADE. RESULTS: Forty-seven studies met the inclusion criteria, utilizing diffusion-weighted imaging (DTI) (n = 39), magnetization transfer (MT) (n = 6), MR spectroscopy (n = 3), and myelin water imaging (n = 1), as well as a combination of MRI methods (n = 12). The metric fractional anisotropy (FA) showed the highest potential in all facets of utilities, followed by mean diffusivity. Other promising metrics included MT ratio and intracellular volume fraction, especially in multimodal studies. However, the level of evidence for these promising metrics was low due to a small number of studies. Some studies, mainly DTI, also reported the usefulness of spinal cord MRI in mild CSM. CONCLUSIONS: Spinal cord MRI methods can potentially facilitate the diagnosis and management of CSM by quantitatively interrogating the structural integrity of CSC. DTI is the most promising MRI method, and other techniques have also shown promise, especially in multimodal configurations. However, this field is in its early stages, and more studies are needed to establish the usefulness of spinal cord MRI in CSM.


Subject(s)
Spinal Cord Diseases , Spondylosis , Humans , Diffusion Tensor Imaging/methods , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/etiology , Spinal Cord Diseases/pathology , Spinal Cord/pathology , Magnetic Resonance Imaging , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/pathology , Biomarkers , Spondylosis/complications , Spondylosis/diagnostic imaging , Spondylosis/pathology
12.
medRxiv ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37205383

ABSTRACT

Objective: Chronic pain involves alterations in brain gray matter volume (GMV). Moreover, opioid medications are known to reduce GMV in numerous brain regions involved in pain processing. However, no research has evaluated (1) chronic pain-related GMV alterations in the spinal cord or (2) the effect of opioids on spinal cord GMV. Accordingly, this study evaluated spinal cord GMV in health controls and patients with fibromyalgia who were using and not using opioids long-term. Methods: We analyzed average C5 - C7 GMV of the spinal cord dorsal and ventral horns in separate female cohorts of healthy controls (HC, n = 30), fibromyalgia patients not using opioids (FMN, n = 31), and fibromyalgia patients using opioids long-term (FMO, n = 27). To assess the effect of group on average dorsal and ventral horn GMV, we conducted a one-way multivariate analysis of covariance. Results: After controlling for age, we observed a significant effect of group on ventral horn GMV (p = 0.03, η2 = 0.09), and on dorsal horn GMV (p = 0.05, η2 = 0.08). Tukey's posthoc comparisons showed that, compared to HC participants, FMOs had significantly lower ventral (p = 0.01) and dorsal (p = 0.02) GMVs. Among FMOs only, ventral horn GMV was significantly positively associated with pain severity and interference, and both dorsal and ventral GMVs were significantly positively associated with cold pain tolerance. Conclusion: Long-term opioid use may impact sensory processing in fibromyalgia via gray matter changes within the cervical spinal cord.

13.
Neurol Clin Pract ; 13(2): e200126, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37064579

ABSTRACT

Background and Objectives: Patients with cervical spondylotic myelopathy (CSM) have motor impairments, including weakness, imbalance, and loss of dexterity. The reliable assessment of these symptoms is critical for treatment decisions. This study aimed to determine, for the first time, the use of the NIH Toolbox motor battery (NIHTBm) in the objective assessment of motor deficits in patients with CSM. Methods: Patients with symptoms and MRI evidence of CSM and age-matched healthy controls (HC), with no evidence of spinal disorder or surgery were included in this case-control study based on our inclusion and exclusion criteria. We performed motor tests, dexterity, gait speed, grip strength, and balance tests, using the NIHTBm in patients with CSM and HCs. Motor impairment rates were determined in patients with CSM based on the NIHTBm scores. We determined the association between NIHTBm scores and patient-reported outcome scores; patient-reported outcome measures (the modified Japanese Orthopedic Association [mJOA] and Nurick grade) to determine the association. One-way analysis of variance was used to analyze group differences and the Spearman rank correlation to determine the relationship between assessment scores. Results: We enrolled 24 patients with CSM with a mean age (SD) of 57.96 (10.61) years and 24 age-matched HCs with a mean age (SD) of 53.17 (6.04) years in this study. Overall, we observed a significant decrease in the motor function T-scores mean (SD): dexterity 31.54 (14.82) vs 51.54 (9.72), grip strength 32.00 (17.47) vs 56.79 (8.46), balance 27.58 (16.65) vs 40.21 (6.35), and gait speed 0.64 (0.18) vs 0.99 (0.17) m/s, in patients with CSM compared with that in HCs. The lower extremity dysfunction scores on the NIHTBm, balance (ρ = -0.67) and gait speed (ρ = -0.62), were associated with higher Nurick grades. We observed a similar but weaker association with the Nurick grades and NIHTBm tests: dexterity (ρ = -0.49) and grip strength (ρ = -0.31) scores. The total motor mJOA showed a positive but weak association with NIHTBm scores, gait speed (ρ = 0.38), balance (ρ = 0.49), grip strength (ρ = 0.41), and dexterity (ρ = 0.45). Discussion: Patients with CSM had significantly lower NIHTBm scores compared with HCs. The results from the NIHTBm are consistent with the clinical presentation of CSM showing patients have motor impairments in both upper and lower extremities. As a neurologic-specific scale, NIHTBm should be used in the evaluation and clinical management of patients with CSM.

14.
J Pain ; 24(6): 1094-1103, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965649

ABSTRACT

Over 20 million adults in the United States live with high impact chronic pain (HICP), or chronic pain that limits life or work activities for ≥3 months. It is critically important to differentiate people with HICP from those who sustain normal activities although experiencing chronic pain. Therefore, we aim to help clinicians and researchers identify those with HICP by: 1) developing models that identify factors associated with HICP using the 2016 national health interview survey (NHIS) and 2) evaluating the performances of those models overall and by sociodemographic subgroups (sex, age, and race/ethnicity). Our analysis included 32,980 respondents. We fitted logistic regression models with LASSO (a parametric model) and random forest (a nonparametric model) for predicting HICP using the whole sample. Both models performed well. The most important factors associated with HICP were those related to underlying ill-health (arthritis and rheumatism, hospitalizations, and emergency department visits) and poor psychological well-being. These factors can be used for identifying higher-risk sub-groups for screening for HICP. We will externally validate these findings in future work. We need future studies that longitudinally predict the initiation and maintenance of HICP, then use this information to prevent HICP and direct patients to optimal treatments. PERSPECTIVE: Our study developed models to identify factors associated with high-impact chronic pain (HICP) using the 2016 National Health Interview Survey. There was homogeneity in the factors associated with HICP by gender, age, and race/ethnicity. Understanding these risk factors is crucial to support the identification of populations and individuals at highest risk for developing HICP and improve access to interventions that target these high-risk subgroups.


Subject(s)
Arthritis , Chronic Pain , Adult , Humans , United States/epidemiology , Chronic Pain/epidemiology , Surveys and Questionnaires
15.
J Neurol Phys Ther ; 47(3): 155-161, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36630206

ABSTRACT

BACKGROUND AND PURPOSE: Predicting future outdoor walking ability after spinal cord injury (SCI) is important, as this is associated with community engagement and social participation. A clinical prediction rule (CPR) was derived for predicting outdoor walking 1 year after SCI. While promising, this CPR has not been validated, which is necessary to establish its clinical value. The objective of this study was to externally validate the CPR using a multisite dataset. METHODS: This was a retrospective analysis of US SCI Model Systems data from 12 centers. L3 motor score, L5 motor score, and S1 sensory score were used as predictor variables. The dataset was split into testing and training datasets. The testing dataset was used as a holdout dataset to provide an unbiased estimate of prediction performance. The training dataset was used to determine the optimal CPR threshold through a "leave-one-site-out" cross-validation framework. The primary outcome was self-reported outdoor walking ability 1 year after SCI. RESULTS: A total of 3721 participants' data were included. Using the optimal CPR threshold (CPR ≥ 33 threshold value), we were able to predict outdoor walking 1 year with high cross-validated accuracy and prediction performance. For the entire dataset, area under receiver operator characteristic curve was 0.900 (95% confidence interval: 0.890-0.910; P < 0.0001). DISCUSSION AND CONCLUSIONS: The outdoor walking CPR has been externally validated. Future research should conduct a clinical outcomes and cost-benefit impact analysis for implementing this CPR. Our results support that clinicians may use this 3-variable CPR for prediction of future outdoor walking ability.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A411 ).


Subject(s)
Spinal Cord Injuries , Walking , Humans , Retrospective Studies , Spinal Cord Injuries/complications
16.
J Spinal Cord Med ; 46(3): 501-507, 2023 05.
Article in English | MEDLINE | ID: mdl-33798025

ABSTRACT

Context/Objective: Magnetic resonance imaging (MRI) indices of spinal cord damage are predictive of future motor function after spinal cord injury (SCI): hyperintensity length, midsagittal tissue bridges, and Brain and Spinal Injury Center (BASIC) scores. Whether these indices are predictive of outdoor walking after SCI is unknown. The primary purpose was to see if these MRI indices predict the ability to walk outdoors one-year after SCI. The secondary purpose was to determine if MRI indices provide additional predictive value if initial lower extremity motor scores are available.Design: Retrospective. Clinical T2-weighted MRIs were used to quantify spinal cord damage. Three MRI indices were calculated: midsagittal ventral tissue bridges, hyperintensity length, BASIC scores.Setting: Academic hospital.Participants: 129 participants with cervical SCI.Interventions: Inpatient rehabilitation.Outcomes Measures: One year after SCI, participants self-reported their outdoor walking ability.Results: Midsagittal ventral tissue bridges, hyperintensity length, and BASIC scores significantly correlated with outdoor walking ability (R = 0.34, P < 0.001; R = -0.25, P < 0.01; Rs = -0.35, P < 001, respectively). Using midsagittal ventral tissue bridges and hyperintensity length, the final adjusted R2 for model 1 = 0.19. For model 2, the adjusted R2 using motor scores alone = 0.81 and MRI variables were non-significant. All five participants with observable intramedullary hemorrhage reported they were unable to walk one block outdoors.Conclusions: The MRI indices were significant predictors of outdoor walking ability, but when motor scores were available, this was the strongest predictor and neither midsagittal tissue bridges nor hyperintensity length contributed additional value. MRI indices may be a quick and convenient supplement to physical examination when motor testing is unavailable.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/complications , Retrospective Studies , Walking , Magnetic Resonance Imaging/methods , Physical Examination , Spinal Cord/pathology
17.
Front Neurol ; 13: 907581, 2022.
Article in English | MEDLINE | ID: mdl-36341092

ABSTRACT

Functional magnetic resonance imaging (fMRI) of the human spinal cord (SC) is a unique non-invasive method for characterizing neurovascular responses to stimuli. Group-analysis of SC fMRI data involves co-registration of subject-level data to standard space, which requires manual masking of the cord and may result in bias of group-level SC fMRI results. To test this, we examined variability in SC masks drawn in fMRI data from 21 healthy participants from a completed study mapping responses to sensory stimuli of the C7 dermatome. Masks were drawn on temporal mean functional image by eight raters with varying levels of neuroimaging experience, and the rater from the original study acted as a reference. Spatial agreement between rater and reference masks was measured using the Dice Similarity Coefficient, and the influence of rater and dataset was examined using ANOVA. Each rater's masks were used to register functional data to the PAM50 template. Gray matter-white matter signal contrast of registered functional data was used to evaluate the spatial normalization accuracy across raters. Subject- and group-level analyses of activation during left- and right-sided sensory stimuli were performed for each rater's co-registered data. Agreement with the reference SC mask was associated with both rater (F(7, 140) = 32.12, P < 2 × 10-16, η2 = 0.29) and dataset (F(20, 140) = 20.58, P < 2 × 10-16, η2 = 0.53). Dataset variations may reflect image quality metrics: the ratio between the signal intensity of spinal cord voxels and surrounding cerebrospinal fluid was correlated with DSC results (p < 0.001). As predicted, variability in the manually-drawn masks influenced spatial normalization, and GM:WM contrast in the registered data showed significant effects of rater and dataset (rater: F(8, 160) = 23.57, P < 2 × 10-16, η2 = 0.24; dataset: F(20, 160) = 22.00, P < 2 × 10-16, η2 = 0.56). Registration differences propagated into subject-level activation maps which showed rater-dependent agreement with the reference. Although group-level activation maps differed between raters, no systematic bias was identified. Increasing consistency in manual contouring of spinal cord fMRI data improved co-registration and inter-rater agreement in activation mapping, however our results suggest that improvements in image acquisition and post-processing are also critical to address.

18.
BMC Musculoskelet Disord ; 23(1): 973, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357864

ABSTRACT

Muscle size and composition (muscle volume and muscle fat infiltrate [MFI]) may provide insight into possible mechanisms underpinning chronic idiopathic neck pain, a common condition with no definitive underlying pathology. In individuals with chronic idiopathic neck pain > 3 months and age- and sex-matched asymptomatic controls, muscle volumes of levator scapulae, multifidus including semispinalis cervicis (MFSS), semispinalis capitis, splenius capitis including splenius cervicis (SCSC), sternocleidomastoid and longus colli from C3 through T1 were quantified from magnetic resonance imaging. Between-group differences were determined using linear mixed models, accounting for side (left or right), muscle, spinal level, sex, age, and body mass index (BMI). Individuals with pain had greater muscle volume (mean difference 76.8mm3; 95% CI 26.6-127.0; p = .003) and MFI (2.3%; 0.2-4.5; p = .034) of the MFSS compared to matched controls with no differences in relative volume, accounting for factors associated with the outcomes: muscle, spinal level, side (left had smaller volume, relative volume and MFI than right), sex (females had less volume and relative volume than males), age (older age associated with less relative volume and greater MFI), and BMI (higher BMI associated with greater muscle volume and MFI). Greater MFI in individuals with chronic idiopathic neck pain suggests a possible underlying mechanism contributing to neck pain. Perspective: These findings suggest MFI in the MFSS may be radiologic sign, potentially identifying patients with a less favourable prognosis. Future studies are needed to confirm this finding and determine if MFI is a contributor to the development or persistence of neck pain, or consequence of neck pain.


Subject(s)
Chronic Pain , Neck Pain , Male , Female , Humans , Neck Pain/diagnostic imaging , Paraspinal Muscles/diagnostic imaging , Cross-Sectional Studies , Neck Muscles/diagnostic imaging , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/pathology , Chronic Pain/diagnostic imaging , Magnetic Resonance Imaging/methods
20.
Psychol Serv ; 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35849362

ABSTRACT

Approximately 1.1 million veterans meet criteria for substance use disorders (SUDs) with 1 in 4 struggling with illicit drugs, 4 in 5 struggling with alcohol use, and 1 in 13 struggling with both. The purpose of this study was to examine the impact of SUDs on closure status (exiting with employment, did not exit with employment) for veterans served in a Department of Veterans Affairs' Veterans Health Administration (VHA) vocational rehabilitation (VR) program. Data (N = 2,620) from a VHA VR program in the Veterans Integrated Service Network 12 network were obtained for the purpose of the present study and consisted of veterans enrolled from 2012 to 2018. Findings showed that veterans without SUDs were more likely to exit with employment, and veterans enrolled in transitional work and community-based employment were more likely to exit with employment compared to those within supported employment (SE). Given that SE helps to serve veterans with the most severe psychological or medical conditions (e.g., active psychosis, schizophrenia, bipolar disorder, spinal cord injury, traumatic brain injury), findings suggest veterans are more successful with less serious mental health conditions. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

SELECTION OF CITATIONS
SEARCH DETAIL
...