Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(46): 11002-14, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25325182

ABSTRACT

The mild yet promiscuous reactions of nitrogen dioxide (NO2) and phenolic derivatives to produce nitrous acid (HONO) have been explored with density functional theory calculations. The reaction is found to occur via four distinct pathways with both proton coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms available. While the parent reaction with phenol may not be significant in the gas phase, electron donating groups in the ortho and para positions facilitate the reduction of nitrogen dioxide by electronically stabilizing the product phenoxy radical. Hydrogen bonding groups in the ortho position may additionally stabilize the nascent resonantly stabilized radical product, thus enhancing the reaction. Catechol (ortho-hydroxy phenol) has a predicted overall free energy change ΔG(0) = -0.8 kcal mol(-1) and electronic activation energy Ea = 7.0 kcal mol(-1). Free amines at the ortho and para positions have ΔG(0) = -3.8 and -1.5 kcal mol(-1); Ea = 2.3 and 2.1 kcal mol(-1), respectively. The results indicate that the hydrogen abstraction reactions of these substituted phenols by NO2 are fast and spontaneous. Hammett constants produce a linear correlation with bond dissociation energy (BDE) demonstrating that the BDE is the main parameter controlling the dark abstraction reaction. The implications for atmospheric chemistry and ground-level nitrous acid production are discussed.

2.
J Phys Chem A ; 118(8): 1451-68, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24471486

ABSTRACT

Thermodynamically stable small clusters of oxalic acid (CO2H)2, ammonia (NH3), and water (H2O) are studied through quantum chemical calculations. The (CO2H)2-NH3 core system with up to three waters of hydration was examined by B3LYP density functional theory and MP2 molecular orbital theory with the aug-cc-pVDZ basis set. The (CO2H)2-NH3 core complexes are observed to hydrogen bond strongly and should be found in appreciably significant concentrations in the atmosphere. Subsequent hydration of the (CO2H)2-NH3 core, however, is found to be somewhat prohibitive under ambient conditions. Relative populations of the examined clusters are predicted and the binding patterns detailed. Atmospheric implications related to new particle formations are discussed.


Subject(s)
Ammonia/chemistry , Atmosphere/chemistry , Oxalic Acid/chemistry , Water/chemistry , Aerosols , Hydrogen Bonding , Models, Molecular , Quantum Theory , Thermodynamics
3.
J Phys Chem A ; 116(47): 11601-17, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23088395

ABSTRACT

The importance of aerosols to humankind is well-known, playing an integral role in determining Earth's climate and influencing human health. Despite this fact, much remains unknown about the initial events of nucleation. In this work, the molecular properties of common organic atmospheric pollutant oxalic acid and its gas phase interactions with water have been thoroughly examined. Local minima single-point energies for the monomer conformations were calculated at the B3LYP and MP2 level of theory with both 6-311++G(d,p) and aug-cc-pVDZ basis sets and are compared with previous works. Optimized geometries, relative energies, and free energy changes for the stable clusters of oxalic acid conformers with up to six waters were then obtained from B3LYP calculations with 6-31+G(d) and 6-311++G(d,p) basis sets. Initially, cooperative binding is predicted to be the most important factor in nucleation, but as the clusters grow, dipole cancellations are found to play a pivotal role. The clusters of oxalic acid hydrated purely with water tend to produce extremely stable and neutral core systems. Free energies of formation and atmospheric implications are discussed.


Subject(s)
Oxalic Acid/chemistry , Quantum Theory , Water/chemistry , Models, Molecular , Molecular Conformation , Thermodynamics
4.
J Phys Chem A ; 113(3): 583-91, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19090746

ABSTRACT

The thermal decomposition of ethyl and propyl iodides, along with select isotopomers, up to 1300 K was performed by flash pyrolysis with a 20-100 mus time scale. The pyrolysis was followed by supersonic expansion to isolate the reactive intermediates and initial products, and detection was accomplished by vacuum ultraviolet single photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS). The products monitored, such as CH(3), CH(3)I, C(2)H(5), C(2)H(4), HI, I, C(3)H(7), C(3)H(6), and I(2), provide for the simultaneous and direct observation of molecular elimination and bond fission pathways in ethyl and propyl iodides. In the pyrolysis of ethyl iodide, both C-I bond fission and HI molecular elimination pathways are competitive at the elevated temperatures, with C-I bond fission being preferred; at temperatures >or=1000 K, the ethyl radical products further dissociate to ethene + H atoms. In the pyrolysis of isopropyl iodide, both HI molecular elimination and C-I bond fission are observed and the molecular elimination channel is more important at all the elevated temperatures; the isopropyl radicals produced in the C-I fission channel undergo further decomposition to propene + H at temperatures >or=850 K. In contrast, bond fission is found to dominate the n-propyl iodide pyrolysis; at temperatures >or=950 K the n-propyl radicals produced decompose into methyl radical + ethene and propene + H atom. Isotopomer experiments characterize the extent of surface reactions and verify that the HI molecular eliminations in ethyl and propyl iodides proceed by a C1, C2 elimination mechanism (the 1,2 intramolecular elimination).

5.
J Phys Chem A ; 111(45): 11487-92, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17956079

ABSTRACT

The thermal decomposition of isoprene up to 1400 K was performed by flash pyrolysis with an approximately 100 mus time scale. This pyrolysis was followed by supersonic expansion to isolate the reactive intermediates and initial products, and detection was accomplished by vacuum ultraviolet single photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) at lambda = 118.2 nm. Products CH(3), C(2)H(4), C(3)H(3), C(3)H(4), C(4)H(4), C(4)H(5), C(5)H(6), C(5)H(7), and C(6)H(6) were directly observed and provide mechanistic insights to the isoprene pyrolysis. At temperatures >or= approximately 1200 K, the molecular elimination of ethene to form C(3)H(4) and sigma bond homolysis producing C(4)H(5) and CH(3) radicals are competitive reaction pathways. The molecular elimination of acetylene to form C(3)H(6) was minimal and direct C(2)-C(3) sigma bond homolysis was not observed. The C(3)H(3) radicals are also observed, as a result of hydrogen loss of C(3)H(4) by pyrolysis or hydrogen abstraction by the CH(3) radical from C(3)H(4). Above approximately 1250 K, production of C(6)H(6) was observed and identified as the combination product of the C(3)H(3) radicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...