Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 11(1): 1934, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479314

ABSTRACT

Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood-brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.


Subject(s)
Brain/drug effects , Brain/metabolism , Dependovirus/genetics , Liver/drug effects , Animals , Blood-Brain Barrier/drug effects , Brain/diagnostic imaging , Genetic Therapy , Genetic Vectors/therapeutic use , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/pharmacology , Humans , Injections, Intravenous , Liver/diagnostic imaging , Magnetic Resonance Imaging , Mice , Neurons/drug effects , Promoter Regions, Genetic , Synapsins/chemistry , Synapsins/pharmacology , Tissue Distribution , Transduction, Genetic , Ultrasonography
2.
Arch Gynecol Obstet ; 302(1): 31-45, 2020 07.
Article in English | MEDLINE | ID: mdl-32445067

ABSTRACT

PURPOSE: The use of assisted reproductive technology (ART) has increased in the last 2 decades and continuous surveillance is needed. This systematic review aims to assess the risk of adverse neonatal outcomes (preterm birth [PTB], low birth weight [LBW], small-for-gestationalage [SGA] and large for gestational-age [LGA]), in singleton pregnancies conceived by fresh or frozen embryo transfer (FET) compared to spontaneous conceptions. METHODS: Cohort studies were identified from MEDLINE, Embase, Cochrane Library (January 2019), and manual search. Meta-analyses were performed to estimate odds ratios (OR) using random effects models in RevMan 5.3 and I-squared (I2) test > 50% was considered as high heterogeneity. RESULTS: After 3142 titles and abstracts were screened, 1180 full-text articles were assessed, and 14 were eligible. For fresh embryo transfer, the pooled ORs were PTB 1.64 (95% CI 1.46, 1.84); I2 = 97%; LBW 1.67 (95% CI 1.52, 1.85); I2 = 94%; SGA 1.46 [95% CI 1.11, 1.92]; I2 = 99%, LGA 0.88 (95% CI 0.80, 0.87); I2 = 80%). For frozen, the pooled ORs were PTB 1.39 (95% CI 1.34, 1.44); I2 = 0%; LBW 1.38 (95% CI 0.91, 2.09); I2 = 98%; SGA 0.83 (95% CI 0.57, 1.19); I2 = 0%, LGA 1.57 (95% CI 1.48, 1.68); I2 = 22%). CONCLUSIONS: When compared with spontaneous pregnancies, fresh, but not frozen was associated with LBW and SGA. Both fresh and frozen were associated with PTB. Frozen was uniquely associated with LGA. Despite improvements in ART protocols in relation to pregnancy rates, attention is needed towards monitoring adverse neonatal outcomes in these pregnancies.


Subject(s)
Embryo Transfer/adverse effects , Embryo Transfer/methods , Fertilization , Fetal Growth Retardation/etiology , Infertility/therapy , Premature Birth/etiology , Reproductive Techniques, Assisted , Cohort Studies , Cryopreservation , Female , Fetal Growth Retardation/epidemiology , Humans , Infant, Low Birth Weight , Infant, Newborn , Pregnancy , Pregnancy Outcome , Pregnancy Rate , Premature Birth/epidemiology , Treatment Outcome
3.
Theranostics ; 9(26): 8127-8137, 2019.
Article in English | MEDLINE | ID: mdl-31754385

ABSTRACT

Gene therapy can be designed to efficiently counter pathological features characteristic of neurodegenerative disorders. Here, we took advantage of the glial fibrillary acidic protein (GFAP) promoter to preferentially enhance transgene expression near plaques composed of amyloid-beta peptides (Aß), a hallmark of Alzheimer's disease (AD), in the TgCRND8 mouse model of amyloidosis. Methods: The delivery of intravenously injected recombinant adeno-associated virus mosaic serotype 1/2 (rAAV1/2) to the cortex and hippocampus of TgCRND8 mice was facilitated using transcranial MRI-guided focused ultrasound in combination with microbubbles (MRIgFUS), which transiently and locally increases the permeability of the blood-brain barrier (BBB). rAAV1/2 expression of the reporter green fluorescent protein (GFP) under a GFAP promoter was compared to GFP expression driven by the constitutive human beta actin (HBA) promoter. Results: MRIgFUS targeting the cortex and hippocampus facilitated the entry of rAAV1/2 and GFP expression under the GFAP promoter was localized to GFAP-positive astrocytes. Adjacent to Aß plaques where GFAP is upregulated, the volume, surface area, and fluorescence intensity of the transgene GFP were greater in rAAV1/2-GFAP-GFP compared to rAAV1/2-HBA-GFP treated animals. In peripheral organs, GFP expression was particularly strong in the liver, irrespective of the promoter. Conclusion: The GFAP promoter enhanced transgene expression in proximity of Aß plaques in the brain of TgCRND8 mice, and it also resulted in significant expression in the liver. Future gene therapies for neurological disorders could benefit from using a GFAP promoter to regulate transgene expression in response to disease-induced astrocytic reactivity.


Subject(s)
Gene Transfer Techniques , Glial Fibrillary Acidic Protein , Plaque, Amyloid/pathology , Promoter Regions, Genetic , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/metabolism , Disease Models, Animal , Gene Expression , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Liver/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism , Transgenes
4.
Discoveries (Craiova) ; 5(4): e79, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-32309597

ABSTRACT

Amyloids play critical roles in human diseases but have increasingly been recognized to also exist naturally. Shared physicochemical characteristics of amyloids and of their smaller oligomeric building blocks offer the prospect of molecular interactions and crosstalk amongst these assemblies, including the propensity to mutually influence aggregation. A case in point might be the recent discovery of an interaction between the amyloid ß peptide (Aß) and somatostatin (SST). Whereas Aß is best known for its role in Alzheimer disease (AD) as the main constituent of amyloid plaques, SST is intermittently stored in amyloid-form in dense core granules before its regulated release into the synaptic cleft. This review was written to introduce to readers a large body of literature that surrounds these two peptides. After introducing general concepts and recent progress related to our understanding of amyloids and their aggregation, the review focuses separately on the biogenesis and interactions of Aß and SST, before attempting to assess the likelihood of encounters of the two peptides in the brain, and summarizing key observations linking SST to the pathobiology of AD. While the review focuses on Aß and SST, it is to be anticipated that crosstalk amongst functional and disease-associated amyloids will emerge as a general theme with much broader significance in the etiology of dementias and other amyloidosis.

7.
PLoS One ; 8(4): e61765, 2013.
Article in English | MEDLINE | ID: mdl-23626724

ABSTRACT

NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+) concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+)-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.


Subject(s)
Calcium Channels, L-Type/chemistry , Calmodulin/metabolism , Snails/metabolism , Amino Acid Motifs , Animals , Binding Sites , Biological Evolution , Calcium Channels, L-Type/classification , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calmodulin/chemistry , Calmodulin/genetics , Conserved Sequence , Gene Expression , Genes, Reporter , Green Fluorescent Proteins , HEK293 Cells , Humans , Molecular Sequence Data , Patch-Clamp Techniques , Phylogeny , Protein Binding , Protein Interaction Domains and Motifs , Sequence Homology, Amino Acid , Snails/genetics
8.
Neuropharmacology ; 62(7): 2227-38, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22306487

ABSTRACT

Synaptic and extrasynaptic activation of the N-methyl-D-aspartate receptor (NMDAR) has distinct consequences on cell signaling and neuronal survival. Since conantokin (con)-G antagonism is NR2B-selective, which is the key subunit involved in extrasynaptic activation of the receptor, its ability to specifically elicit distinct signaling outcomes in neurons with synaptically or extrasynaptically-activated NMDARs was evaluated. Inhibition of Ca(2+) influx through extrasynaptic NMDAR ion channels was neuroprotective, as it effectively enhanced levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), activated cAMP response element binding protein (CREB), enhanced mitochondrial viability, and attenuated the actin disorganization observed by extrasynaptic activation of NMDARs. Conversely, the pro-signaling pathways stimulated by synaptically-induced Ca(2+) influx were abolished by con-G. Furthermore, subunit non-selective con-T was unable to successfully redress the impairments in neurons caused by extrasynaptically-activated NMDARs, thus indicating that NR2B-specific antagonists are beneficial for neuron survival. Neurons ablated for the NR2B subunit showed weak synaptic Ca(2+) influx, reduced sensitivity to MK-801 blockage, and diminished extrasynaptic current compared to WT and NR2A(-/-) neurons. This indicates that the NR2B subunit is an integral component of both synaptic and extrasynaptic NMDAR channels. Altogether, these data suggest that con-G specifically targets the NR2B subunit in the synaptic and extrasynaptic locations, resulting in the opposing action of con-G on differentially activated pools of NMDARs.


Subject(s)
Conotoxins/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Synapses/drug effects , Animals , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...