Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38959891

ABSTRACT

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.

2.
Cell ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38942015

ABSTRACT

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.

3.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37961200

ABSTRACT

Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genes but the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes pooled CRISPR screens and lectin microarrays to uncover and characterize regulators of cell surface glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose surface levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two novel high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this method allowed us to interrogate Golgi function in-depth and reveal that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.

4.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37873079

ABSTRACT

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans , neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the WNT ligand EGL-20, which activate the mitochondrial unfolded protein response (UPR MT ) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-peripheral UPR MT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, like WNT and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPR MT activation. We also find that the germline tissue itself is essential in UPR MT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.

5.
Elife ; 122023 07 25.
Article in English | MEDLINE | ID: mdl-37489956

ABSTRACT

Changes in lipid metabolism are associated with aging and age-related diseases, including proteopathies. The endoplasmic reticulum (ER) is uniquely a major hub for protein and lipid synthesis, making its function essential for both protein and lipid homeostasis. However, it is less clear how lipid metabolism and protein quality may impact each other. Here, we identified let-767, a putative hydroxysteroid dehydrogenase in Caenorhabditis elegans, as an essential gene for both lipid and ER protein homeostasis. Knockdown of let-767 reduces lipid stores, alters ER morphology in a lipid-dependent manner, and blocks induction of the Unfolded Protein Response of the ER (UPRER). Interestingly, a global reduction in lipogenic pathways restores UPRER induction in animals with reduced let-767. Specifically, we find that supplementation of 3-oxoacyl, the predicted metabolite directly upstream of let-767, is sufficient to block induction of the UPRER. This study highlights a novel interaction through which changes in lipid metabolism can alter a cell's response to protein-induced stress.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Animals , Aging , Caenorhabditis elegans , Homeostasis , Lipids
6.
Nat Cell Biol ; 22(8): 911-912, 2020 08.
Article in English | MEDLINE | ID: mdl-32641767

Subject(s)
Proteostasis , Homeostasis
7.
Sci Adv ; 6(26): eaaz9805, 2020 06.
Article in English | MEDLINE | ID: mdl-32637599

ABSTRACT

Recent work has highlighted the fact that lysosomes are a critical signaling hub of metabolic processes, providing fundamental building blocks crucial for anabolic functions. How lysosomal functions affect other cellular compartments is not fully understood. Here, we find that lysosomal recycling of the amino acids lysine and arginine is essential for proper ER quality control through the UPRER. Specifically, loss of the lysine and arginine amino acid transporter LAAT-1 results in increased sensitivity to proteotoxic stress in the ER and decreased animal physiology. We find that these LAAT-1-dependent effects are linked to glycine metabolism and transport and that the loss of function of the glycine transporter SKAT-1 also increases sensitivity to ER stress. Direct lysine and arginine supplementation, or glycine supplementation alone, can ameliorate increased ER stress sensitivity found in laat-1 mutants. These data implicate a crucial role in recycling lysine, arginine, and glycine in communication between the lysosome and ER.

8.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31761535

ABSTRACT

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Subject(s)
Caenorhabditis elegans/physiology , Endoplasmic Reticulum/metabolism , Hyaluronoglucosaminidase/metabolism , Longevity/physiology , Membrane Proteins/metabolism , Unfolded Protein Response , Animals , Caenorhabditis elegans/immunology , Cell Line , Cell Proliferation , Disease Resistance , Endoplasmic Reticulum Stress , Fibroblasts/metabolism , Humans , Immunity, Innate , Models, Biological , Molecular Weight , Signal Transduction
9.
EMBO J ; 35(22): 2447-2467, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27733427

ABSTRACT

The integrity of the nuclear envelope barrier relies on membrane remodeling by the ESCRTs, which seal nuclear envelope holes and contribute to the quality control of nuclear pore complexes (NPCs); whether these processes are mechanistically related remains poorly defined. Here, we show that the ESCRT-II/III chimera, Chm7, is recruited to a nuclear envelope subdomain that expands upon inhibition of NPC assembly and is required for the formation of the storage of improperly assembled NPCs (SINC) compartment. Recruitment to sites of NPC assembly is mediated by its ESCRT-II domain and the LAP2-emerin-MAN1 (LEM) family of integral inner nuclear membrane proteins, Heh1 and Heh2. We establish direct binding between Heh2 and the "open" forms of both Chm7 and the ESCRT-III, Snf7, and between Chm7 and Snf7. Interestingly, Chm7 is required for the viability of yeast strains where double membrane seals have been observed over defective NPCs; deletion of CHM7 in these strains leads to a loss of nuclear compartmentalization suggesting that the sealing of defective NPCs and nuclear envelope ruptures could proceed through similar mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Protein Binding , Protein Multimerization , Saccharomyces cerevisiae/enzymology
10.
Trends Cell Biol ; 26(1): 29-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26437591

ABSTRACT

The unique biochemical identity of the nuclear envelope confers its capacity to establish a barrier that protects the nuclear compartment and directly contributes to nuclear function. Recent work uncovered quality control mechanisms employing the endosomal sorting complexes required for transport (ESCRT) machinery and a new arm of endoplasmic reticulum-associated protein degradation (ERAD) to counteract the unfolding, damage, or misassembly of nuclear envelope proteins and ensure the integrity of the nuclear envelope membranes. Moreover, cells have the capacity to recognize and triage defective nuclear pore complexes to prevent their inheritance and preserve the longevity of progeny. These mechanisms serve to highlight the diverse strategies used by cells to maintain nuclear compartmentalization; we suggest they mitigate the progression and severity of diseases associated with nuclear envelope malfunction such as the laminopathies.


Subject(s)
Nuclear Envelope/physiology , Active Transport, Cell Nucleus , Animals , Endoplasmic Reticulum-Associated Degradation , Endosomal Sorting Complexes Required for Transport/physiology , Humans , Nuclear Proteins/metabolism
11.
Nucleus ; 6(3): 197-202, 2015.
Article in English | MEDLINE | ID: mdl-25942571

ABSTRACT

The endosomal sorting complexes required for transport (ESCRT) are best known for their role in sorting ubiquitylated membrane proteins into endosomes. The most ancient component of the ESCRT machinery is ESCRT-III, which is capable of oligomerizing into a helical filament that drives the invagination and scission of membranes aided by the AAA ATPase, Vps4, in several additional subcellular contexts. Our recent study broadens the work of ESCRT-III by identifying its role in a quality control pathway at the nuclear envelope (NE) that ensures the normal biogenesis of nuclear pore complexes (NPCs). Here, we will elaborate on how we envision this mechanism to progress and incorporate ESCRT-III into an emerging model of nuclear pore formation. Moreover, we speculate there are additional roles for the ESCRT-III machinery at the NE that broadly function to ensure its integrity and the maintenance of the nuclear compartment.


Subject(s)
Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/genetics , Chromatin/chemistry , Chromatin/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/chemistry , Gene Expression Regulation, Fungal , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Pore/chemistry , Nuclear Pore/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
12.
Cell ; 159(2): 388-401, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25303532

ABSTRACT

The maintenance of nuclear compartmentalization by the nuclear envelope and nuclear pore complexes (NPCs) is essential for cell function; loss of compartmentalization is associated with cancers, laminopathies, and aging. We uncovered a pathway that surveils NPC assembly intermediates to promote the formation of functional NPCs. Surveillance is mediated by Heh2, a member of the LEM (Lap2-emerin-MAN1) family of integral inner nuclear membrane proteins, which binds to an early NPC assembly intermediate, but not to mature NPCs. Heh2 recruits the endosomal sorting complex required for transport (ESCRT)-III subunit Snf7 and the AAA-ATPase Vps4 to destabilize and clear defective NPC assembly intermediates. When surveillance or clearance is compromised, malformed NPCs accumulate in a storage of improperly assembled nuclear pore complexes compartment, or SINC. The SINC is retained in old mothers to prevent loss of daughter lifespan, highlighting a continuum of mechanisms to ensure nuclear compartmentalization.


Subject(s)
Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Active Transport, Cell Nucleus , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism
13.
J Cell Biol ; 203(2): 215-32, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24165936

ABSTRACT

Nuclear pore complexes (NPCs) are essential protein assemblies that span the nuclear envelope and establish nuclear-cytoplasmic compartmentalization. We have investigated mechanisms that control NPC number in mother and daughter cells during the asymmetric division of budding yeast. By simultaneously tracking existing NPCs and newly synthesized NPC protomers (nups) through anaphase, we uncovered a pool of the central channel nup Nsp1 that is actively targeted to the bud in association with endoplasmic reticulum. Bud targeting required an intact actin cytoskeleton and the class V myosin, Myo2. Selective inhibition of cytoplasmic Nsp1 or inactivation of Myo2 reduced the inheritance of NPCs in daughter cells, leading to a daughter-specific loss of viability. Our data are consistent with a model in which Nsp1 releases a barrier that otherwise prevents NPC passage through the bud neck. It further supports the finding that NPC inheritance, not de novo NPC assembly, is primarily responsible for controlling NPC number in daughter cells.


Subject(s)
Cytoplasm/metabolism , Mitosis , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Actin Cytoskeleton/metabolism , Anaphase , Endoplasmic Reticulum/metabolism , Heredity , Microbial Viability , Microscopy, Fluorescence , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Time Factors , Video Recording
14.
J Cell Biol ; 190(3): 363-75, 2010 Aug 09.
Article in English | MEDLINE | ID: mdl-20696706

ABSTRACT

The endoplasmic reticulum (ER) network is extremely dynamic in animal cells, yet little is known about the mechanism and function of its movements. The most common ER dynamic, termed ER sliding, involves ER tubule extension along stable microtubules (MTs). In this study, we show that ER sliding occurs on nocodazole-resistant MTs that are posttranslationally modified by acetylation. We demonstrate that high MT curvature is a good indicator of MT acetylation and show in live cells that ER sliding occurs predominantly on these curved, acetylated MTs. Furthermore, increasing MT acetylation by drug treatment increases the frequency of ER sliding. One purpose of the ER sliding on modified MT tracts could be to regulate its interorganelle contacts. We find that all mitochondria and many endosomes maintain contact with the ER despite the movements of each. However, mitochondria, but not endosomes, preferentially localize to acetylated MTs. Thus, different ER dynamics may occur on distinct MT populations to establish or maintain contacts with different organelles.


Subject(s)
Endoplasmic Reticulum/metabolism , Microtubules/metabolism , Mitochondria/metabolism , Acetylation , Animals , COS Cells , Chlorocebus aethiops
SELECTION OF CITATIONS
SEARCH DETAIL
...