Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929899

ABSTRACT

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Subject(s)
Aging/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Membranes/physiology , Animals , Autophagy/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Caloric Restriction , HEK293 Cells , Humans , Longevity/physiology , Male , Mice , Mice, Knockout , Mitochondria , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Permeability , Primary Cell Culture , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Reperfusion Injury/metabolism , Signal Transduction
2.
Cell Rep ; 20(3): 627-640, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723566

ABSTRACT

Organisms must execute metabolic defenses to survive nutrient deprivation. We performed a genome-wide RNAi screen in Caenorhabditis elegans to identify fat regulatory genes indispensable for starvation resistance. Here, we show that opposing proteostasis pathways are principal determinants of starvation survival. Reduced function of cytoplasmic aminoacyl tRNA synthetases (ARS genes) increases fat mass and extends starvation survival, whereas reduced proteasomal function reduces fat and starvation survival. These opposing pathways converge on AMP-activated protein kinase (AMPK) as the critical effector of starvation defenses. Extended starvation survival in ARS deficiency is dependent upon increased proteasome-mediated activation of AMPK. When the proteasome is inhibited, neither starvation nor ARS deficiency can fully activate AMPK, leading to greatly diminished starvation survival. Thus, activity of the proteasome and AMPK are mechanistically linked and highly correlated with starvation resistance. Conversely, aberrant activation of the proteostasis-AMPK axis during nutritional excess may have implications for obesity and cardiometabolic diseases.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Proteostasis/physiology , AMP-Activated Protein Kinases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Genome-Wide Association Study
3.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984722

ABSTRACT

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Subject(s)
Metformin/pharmacology , Acyl-CoA Dehydrogenase/genetics , Aging , Animals , Body Size , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Longevity , Mechanistic Target of Rapamycin Complex 1 , Mitochondria/metabolism , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Neoplasms/drug therapy , Nuclear Pore/metabolism , Oxidative Phosphorylation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
4.
Development ; 140(17): 3601-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23884442

ABSTRACT

The target of rapamycin complex 2 (TORC2) pathway is evolutionarily conserved and regulates cellular energetics, growth and metabolism. Loss of function of the essential TORC2 subunit Rictor (RICT-1) in Caenorhabditis elegans results in slow developmental rate, reduced brood size, small body size, increased fat mass and truncated lifespan. We performed a rict-1 suppressor RNAi screen of genes encoding proteins that possess the phosphorylation sequence of the AGC family kinase SGK, a key downstream effector of TORC2. Only RNAi to dpy-21 suppressed rict-1 slow developmental rate. DPY-21 functions canonically in the ten-protein dosage compensation complex (DCC) to downregulate the expression of X-linked genes only in hermaphroditic worms. However, we find that dpy-21 functions outside of its canonical role, as RNAi to dpy-21 suppresses TORC2 mutant developmental delay in rict-1 males and hermaphrodites. RNAi to dpy-21 normalized brood size and fat storage phenotypes in rict-1 mutants, but failed to restore normal body size and normal lifespan. Further dissection of the DCC via RNAi revealed that other complex members phenocopy the dpy-21 suppression of rict-1, as did RNAi to the DCC effectors set-1 and set-4, which methylate histone 4 on lysine 20 (H4K20). TORC2/rict-1 animals show dysregulation of H4K20 mono- and tri-methyl silencing epigenetic marks, evidence of altered DCC, SET-1 and SET-4 activity. DPY-21 protein physically interacts with the protein kinase SGK-1, suggesting that TORC2 directly regulates the DCC. Together, the data suggest non-canonical, negative regulation of growth and reproduction by DPY-21 via DCC, SET-1 and SET-4 downstream of TORC2 in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Carrier Proteins/metabolism , Dosage Compensation, Genetic/genetics , Energy Metabolism/physiology , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Animals , Blotting, Western , Body Size/genetics , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Clutch Size/genetics , DNA Primers/genetics , Energy Metabolism/genetics , Epigenesis, Genetic/physiology , Female , Histone-Lysine N-Methyltransferase/metabolism , Longevity/genetics , Male , Mechanistic Target of Rapamycin Complex 2 , Methyltransferases/metabolism , Multiprotein Complexes/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Rapamycin-Insensitive Companion of mTOR Protein
5.
J Vis Exp ; (73)2013 Mar 30.
Article in English | MEDLINE | ID: mdl-23568026

ABSTRACT

The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.


Subject(s)
Caenorhabditis elegans/chemistry , Fats/analysis , Fats/chemistry , Staining and Labeling/methods , 2-Propanol/chemistry , Animals , Gas Chromatography-Mass Spectrometry/methods , Microscopy, Fluorescence/methods , Oxazines/chemistry , Phospholipids/analysis , Triglycerides/analysis
6.
Dev Biol ; 373(1): 14-25, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23064027

ABSTRACT

Polyunsaturated fatty acids serve both structural and functional roles as membrane components and precursors for a number of different factors involved in inflammation and signaling. These fatty acids are required in the human diet, although excess dietary intake of omega-6 fatty polyunsaturated fatty acids may have a negative influence on human health. In the model nematode, Caenorhabditis elegans, dietary exposure to dihomo-gamma-linolenic acid (DGLA), an omega-6 fatty acid, causes the destruction of germ cells and leads to sterility. In this study we used genetic and microscopic approaches to further characterize this phenomenon. We found that strains carrying mutations in genes involved in lipid homeostasis enhanced sterility phenotypes, while mutations reducing the activity of the conserved insulin/IGF signaling pathway suppressed sterility phenotypes. Exposure to a mild heat stress prior to omega-6 fatty acid treatment led to an adaptive or hormetic response, resulting in less sterility. Mutations in skn-1 and knockdown of genes encoding phase II detoxification enzymes led to increased sterility in the presence of dietary DGLA. Thus, detoxification systems and genetic changes that increase overall stress responses protect the germ cells from destruction. Microscopic analyses revealed that dietary DGLA leads to deterioration of germ cell membranes in the proliferative and transition zones of the developing germ line. Together, these data demonstrate that specific omega-6 polyunsaturated fatty acids, or molecules derived from them, are transported to the germ line where they disrupt the rapidly expanding germ cell membranes, leading to germ cell death.


Subject(s)
8,11,14-Eicosatrienoic Acid/toxicity , Dietary Fats/toxicity , Germ Cells/physiology , Infertility/etiology , Signal Transduction/genetics , Stress, Physiological/physiology , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Death/drug effects , Cell Membrane/drug effects , Chromatography, Gas , DNA-Binding Proteins/genetics , Germ Cells/drug effects , Hot Temperature , Indoles , Insulin/metabolism , Microscopy, Fluorescence , Mutation/genetics , RNA Interference , Real-Time Polymerase Chain Reaction , Species Specificity , Transcription Factors/genetics
7.
J Bacteriol ; 184(13): 3492-500, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12057943

ABSTRACT

Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.


Subject(s)
Chlorophenols/metabolism , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Flavin-Adenine Dinucleotide/analogs & derivatives , Oxygenases/genetics , Oxygenases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cloning, Molecular , Escherichia coli/genetics , FMN Reductase , Flavin-Adenine Dinucleotide/metabolism , Maleates/metabolism , Multigene Family , Mutation , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...