Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1427723, 2024.
Article in English | MEDLINE | ID: mdl-38904049

ABSTRACT

The pathogeneses of type 1 and type 2 diabetes involve the progressive loss of functional beta cell mass, primarily attributed to cellular demise and/or dedifferentiation. While the scientific community has devoted significant attention to unraveling beta cell dedifferentiation in type 2 diabetes, its significance in type 1 diabetes remains relatively unexplored. This perspective article critically analyzes the existing evidence for beta cell dedifferentiation in type 1 diabetes, emphasizing its potential to reduce beta cell autoimmunity. Drawing from recent advancements in both human studies and animal models, we present beta cell identity as a promising target for managing type 1 diabetes. We posit that a better understanding of the mechanisms of beta cell dedifferentiation in type 1 diabetes is key to pioneering interventions that balance beta cell function and immunogenicity.


Subject(s)
Cell Dedifferentiation , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Humans , Autoimmunity , Cell Dedifferentiation/physiology , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology
3.
Am J Physiol Renal Physiol ; 317(2): F489-F501, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188034

ABSTRACT

Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.


Subject(s)
Citrates/urine , Dicarboxylic Acid Transporters/biosynthesis , Dicarboxylic Acid Transporters/genetics , Organic Anion Transporters, Sodium-Dependent/biosynthesis , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/biosynthesis , Symporters/genetics , Acidosis/metabolism , Animals , Diet , Female , Genetic Variation , Hypokalemia/metabolism , Immunohistochemistry , Kidney Medulla/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
Am J Physiol Renal Physiol ; 315(2): F211-F222, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29561185

ABSTRACT

Renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Sex differences are well recognized as an important biological variable in many aspects of renal function, including fluid and electrolyte metabolism. However, sex differences in renal ammonia metabolism have not been previously reported. Therefore, the purpose of the current study was to investigate sex differences in renal ammonia metabolism. We studied 4-mo-old wild-type C57BL/6 mice fed a normal diet. Despite similar levels of food intake, and, thus, protein intake, which is the primary determinant of endogenous acid production, female mice excreted greater amounts of ammonia, but not titratable acids, than did male mice. This difference in ammonia metabolism was associated with fundamental structural differences between the female and male kidney. In the female mouse kidney, proximal tubules account for a lower percentage of the renal cortical parenchyma compared with the male kidney, whereas collecting ducts account for a greater percentage of the renal parenchyma than in male kidneys. To further investigate the mechanism(s) behind the greater ammonia excretion in female mice, we examined differences in the expression of proteins involved in renal ammonia metabolism and transport. Greater basal ammonia excretion in females was associated with greater expression of PEPCK, glutamine synthetase, NKCC2, Rhbg, and Rhcg than was observed in male mice. We conclude that there are sex differences in basal ammonia metabolism that involve both renal structural differences and differences in expression of proteins involved in ammonia metabolism.


Subject(s)
Ammonia/metabolism , Kidney/metabolism , Renal Elimination , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Female , Gene Expression Regulation , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Kidney/anatomy & histology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Sex Factors , Solute Carrier Family 12, Member 1/genetics , Solute Carrier Family 12, Member 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...