Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Clim Chang ; 12(9): 869-875, 2022.
Article in English | MEDLINE | ID: mdl-35968032

ABSTRACT

It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal adaptations, highlighting the urgent need to work at the source of the problem: reducing GHG emissions.

2.
HardwareX ; 10: e00238, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35607689

ABSTRACT

The experimental control of temperature is key to many scientific and applied endeavors, particularly for studying the effects of greenhouse-gas driven warming on plant performance. Unfortunately, numerous nuisances in the control of temperature for plants renders most commercially available controllers unsuitable or too expensive. Here we describe a simple to use but comprehensive temperature controller for plant growth experiments in enclosed spaces like nurseries or chambers. The device uses Pulse Width Modulation to control independent cooling and heating elements over a broad range of amperages, which minimizes or eliminates temperature overshoot and ensures precise and accurate temperature control (i.e., sensor accuracy = 0.1 °C; controller accuracy = 0.3 °C.). The device incorporates an internal clock for controlling temperature (and growth lights) concurrent with diurnal cycles, and it has an integrated Wi-Fi chip to transfer sensor data to a web-page, where data are displayed in real time. The device uses off-the-shelf parts and can be built for around $USD63. The controller can be integrated with other reported controllers (e.g., soil moisture and CO2) to produce an affordable multi-system controller necessary for complex factorial experiments, which hopefully can help to accelerate our understanding about the impacts of climatic variables on plant performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...