Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Npj Ment Health Res ; 3(1): 32, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937580

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is an established non-invasive brain stimulation treatment for major depressive disorder, but there is marked inter-individual variability in response. Using latent class growth analysis with session-by-session patient global impression ratings from the recently completed BRIGhTMIND trial, we identified five distinct classes of improvement trajectory during a 20-session treatment course. This included a substantial class of patients noticing delayed onset of improvement. Contrary to prior expectations, members of a class characterised by early and continued improvement showed greatest inter-session variability in stimulated location. By relating target locations and inter-session variability to a well-studied atlas, we estimated an average of 3.0 brain networks were stimulated across the treatment course in this group, compared to 1.1 in a group that reported symptom worsening (p < 0.001, d = 0.893). If confirmed, this would suggest that deliberate targeting of multiple brain networks could be beneficial to rTMS outcomes.

2.
Psychiatry Res Neuroimaging ; 342: 111846, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38908353

ABSTRACT

Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.

4.
Chemistry ; 30(33): e202401235, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38593362

ABSTRACT

Trialkyl phosphines PMe3 and PEt3 catalyze the 1,2-cis-diboration of 1,3-butadiynes to give 1,2-diboryl enynes. The products were utilized to synthesize 1,1,2,4-tetraaryl enynes using a Suzuki-Miyaura protocol and can readily undergo proto-deborylation.

5.
ACS Med Chem Lett ; 15(3): 349-354, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505851

ABSTRACT

Next generation antimicrobial therapeutics are desperately needed as new pathogens with multiple resistance mechanisms continually emerge. Two oxaboroles, tavaborole and crisaborole, were recently approved as topical treatments for onychomycosis and atopic dermatitis, respectively, warranting further studies into this privileged structural class. Herein, we report the antimicrobial properties of 3-substituted-2(5H)-oxaboroles, an unstudied family of medicinally relevant oxaboroles. Our results revealed minimum inhibitory concentrations as low as 6.25 and 5.20 µg/mL against fungal (e.g., Penicillium chrysogenum) and yeast (Saccharomyces cerevisiae) pathogens, respectively. These oxaboroles were nonhemolytic and nontoxic to rat myoblast cells (H9c2). Structure-activity relationship studies suggest that planarity is important for antimicrobial activity, possibly due to the effects of extended conjugation between the oxaborole and benzene rings.

6.
Clin Sci (Lond) ; 138(4): 173-187, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38315575

ABSTRACT

Semaglutide is an anti-diabetes and weight loss drug that decreases food intake, slows gastric emptying, and increases insulin secretion. Patients begin treatment with low-dose semaglutide and increase dosage over time as efficacy plateaus. With increasing dosage, there is also greater incidence of gastrointestinal side effects. One reason for the plateau in semaglutide efficacy despite continued low food intake is due to compensatory actions whereby the body becomes more metabolically efficient to defend against further weight loss. Mitochondrial uncoupler drugs decrease metabolic efficiency, therefore we sought to investigate the combination therapy of semaglutide with the mitochondrial uncoupler BAM15 in diet-induced obese mice. Mice were fed high-fat western diet (WD) and stratified into six treatment groups including WD control, BAM15, low-dose semaglutide without or with BAM15, and high-dose semaglutide without or with BAM15. Combining BAM15 with either semaglutide dose decreased body fat and liver triglycerides, which was not achieved by any monotherapy, while high-dose semaglutide with BAM15 had the greatest effect on glucose homeostasis. This study demonstrates a novel approach to improve weight loss without loss of lean mass and improve glucose control by simultaneously targeting energy intake and energy efficiency. Such a combination may decrease the need for semaglutide dose escalation and hence minimize potential gastrointestinal side effects.


Subject(s)
Energy Intake , Weight Loss , Humans , Animals , Mice , Mice, Obese , Diet, High-Fat/adverse effects , Adipose Tissue
7.
Chem Rev ; 124(5): 2441-2511, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38382032

ABSTRACT

Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.


Subject(s)
Boranes , Boron Neutron Capture Therapy , Neoplasms , Humans , Boron/chemistry , Chemistry, Pharmaceutical , Boron Compounds/chemistry , Neoplasms/drug therapy , Boronic Acids , Boron Neutron Capture Therapy/methods
8.
Diabetes ; 73(3): 374-384, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37870907

ABSTRACT

Excess body fat is a risk factor for metabolic diseases and is a leading preventable cause of morbidity and mortality worldwide. There is a strong need to find new treatments that decrease the burden of obesity and lower the risk of obesity-related comorbidities, including cardiovascular disease and type 2 diabetes. Pharmacologic mitochondrial uncouplers represent a potential treatment for obesity through their ability to increase nutrient oxidation. Herein, we report the in vitro and in vivo characterization of compound SHD865, the first compound to be studied in vivo in a newly discovered class of imidazolopyrazine mitochondrial uncouplers. SHD865 is a derivative of the furazanopyrazine uncoupler BAM15. SHD865 is a milder mitochondrial uncoupler than BAM15 that results in a lower maximal respiration rate. In a mouse model of diet-induced adiposity, 6-week treatment with SHD865 completely restored normal body composition and glucose tolerance to levels like those of chow-fed controls, without altering food intake. SHD865 treatment also corrected liver steatosis and plasma hyperlipidemia to normal levels comparable with chow-fed controls. SHD865 has maximal oral bioavailability in rats and slow clearance in human microsomes and hepatocytes. Collectively, these data identify the potential of imidazolopyrazine mitochondrial uncouplers as drug candidates for the treatment of obesity-related disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Mice , Rats , Humans , Animals , Adiposity , Glucose Intolerance/drug therapy , Glucose Intolerance/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/etiology , Liver/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166908, 2024 01.
Article in English | MEDLINE | ID: mdl-37793464

ABSTRACT

Metabolic disorders such as type 2 diabetes, fatty liver disease, hyperlipidemia, and obesity commonly co-occur but clinical treatment options do not effectively target all disorders. Calorie restriction, semaglutide, rosiglitazone, and mitochondrial uncouplers have all demonstrated efficacy against one or more obesity-related metabolic disorders, but it currently remains unclear which therapeutic strategy best targets the combination of hyperglycaemia, liver fat, hypertriglyceridemia, and adiposity. Herein we performed a head-to-head comparison of 5 treatment interventions in the female db/db mouse model of severe metabolic disease. Treatments included ∼60 % calorie restriction (CR), semaglutide, rosiglitazone, BAM15, and niclosamide ethanolamine (NEN). Results showed that BAM15 and CR improved body weight and liver steatosis to levels superior to semaglutide, NEN, and rosiglitazone, while BAM15, semaglutide, and rosiglitazone improved glucose tolerance better than CR and NEN. BAM15, CR, semaglutide, and rosiglitazone all had efficacy against hypertriglyceridaemia. These data provide a comprehensive head-to-head comparison of several key treatment strategies for metabolic disease and highlight the efficacy of mitochondrial uncoupling to correct multiple facets of the metabolic disease milieu in female db/db mice.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Female , Niclosamide/therapeutic use , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Ethanolamine/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Caloric Restriction , Ethanolamines/therapeutic use , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/drug therapy , Obesity/metabolism
11.
Bioorg Med Chem Lett ; 96: 129516, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37832799

ABSTRACT

Sphingosine-1-phosphate (S1P) is a chemotactic lipid that influences immune cell positioning. S1P concentration gradients are necessary for proper egress of lymphocytes from the thymus and secondary lymphoid tissues. This trafficking is interdicted by S1P receptor modulators, and it is expected that S1P transporter (Spns2) inhibitors, by reshaping S1P concentration gradients, will do the same. We previously reported SLF1081851 as a prototype Spns2 inhibitor, which provided a scaffold to investigate the importance of the oxadiazole core and the terminal amine. In this report, we disclose a structure-activity relationship study by incorporating imidazole as both a linker and surrogate for a positive charge in SLF1081851. In vitro inhibition of Spns2-dependent S1P transport in HeLa cells identified 7b as an inhibitor with an IC50 of 1.4 ± 0.3 µM. The SAR studies reported herein indicate that imidazolium can be a substitute for the terminal amine in SLF1081851 and that Spns2 inhibition is highly dependent on the lipid alkyl tail length.


Subject(s)
Lysophospholipids , Sphingosine , Humans , HeLa Cells , Sphingosine/pharmacology , Imidazoles/pharmacology , Anion Transport Proteins/physiology
12.
SLAS Discov ; 28(6): 284-287, 2023 09.
Article in English | MEDLINE | ID: mdl-37454972

ABSTRACT

The sphingosine-1-phosphate (S1P) pathway remains an active area of research for drug discovery because S1P modulators are effective medicine for autoimmune diseases such as multiple sclerosis and ulcerative colitis. As such, other nodes in the pathway can be probed for alternative therapeutic candidates. As S1P elicits its function in an 'outside-in' fashion, targeting the transporter, Spns2, which is upstream of the receptors, is of great interest. To support our medicinal chemistry campaign to inhibit S1P transport, we developed a mammalian cell-based assay. In this protocol, Spns2 inhibition is assessed by treating HeLa, U-937, and THP-1 cells with inhibitors and S1P exported in the extracellular milieu is quantified by LC-MS/MS. Our studies demonstrated that the amount of S1P in the media in inversely proportional to inhibitor concentration. The details of our investigations are described herein.


Subject(s)
Lysophospholipids , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Lysophospholipids/metabolism , Sphingosine/metabolism , Mammals/metabolism
13.
J Med Chem ; 66(8): 5873-5891, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37010497

ABSTRACT

The S1P1 receptor is the target of four marketed drugs for the treatment of multiple sclerosis and ulcerative colitis. Targeting an S1P exporter, specifically Spns2, that is "upstream" of S1P receptor engagement is an alternate strategy that might recapitulate the efficacy of S1P receptor modulators without cardiac toxicity. We recently reported the first Spns2 inhibitor SLF1081851 (16d) that has modest potency with in vivo activity. To develop more potent compounds, we initiated a structure-activity relationship study that identified 2-aminobenzoxazole as a viable scaffold. Our studies revealed SLB1122168 (33p), which is a potent inhibitor (IC50 = 94 ± 6 nM) of Spns2-mediated S1P release. Administration of 33p to mice and rats resulted in a dose-dependent decrease in circulating lymphocytes, a pharmacodynamic indication of Spns2 inhibition. 33p provides a valuable tool compound to explore both the therapeutic potential of targeting Spns2 and the physiologic consequences of selective S1P export inhibition.


Subject(s)
Lymphocytes , Lysophospholipids , Animals , Mice , Rats , Anion Transport Proteins/physiology , Sphingosine , Sphingosine-1-Phosphate Receptors
14.
Org Lett ; 25(15): 2652-2656, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37023099

ABSTRACT

A facile method to access (Z)-1,3-enynes is realized via sequential copper-catalyzed regio- and stereoselective borylation-protodeboronation of 1,3-diynes. Pinacolborane, copper(II) acetate, and Xantphos as the ligand efficiently install hydrogen and Bpin in a cis fashion, which is followed by rapid hydrolysis with water. The reaction has wide substrate scope and occurs in a chemoselective fashion.

15.
Phys Rev Lett ; 130(14): 145101, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084442

ABSTRACT

Collisional plasma shocks generated from supersonic flows are an important feature in many astrophysical and laboratory high-energy-density plasmas. Compared to single-ion-species plasma shocks, plasma shock fronts with multiple ion species contain additional structure, including interspecies ion separation driven by gradients in species concentration, temperature, pressure, and electric potential. We present time-resolved density and temperature measurements of two ion species in collisional plasma shocks produced by head-on merging of supersonic plasma jets, allowing determination of the ion diffusion coefficients. Our results provide the first experimental validation of the fundamental inter-ion-species transport theory. The temperature separation, a higher-order effect reported here, is valuable for advancements in modeling HED and ICF experiments.

16.
J Med Chem ; 66(6): 3876-3895, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36882080

ABSTRACT

Small-molecule mitochondrial uncouplers are gaining recognition as potential therapeutics for metabolic diseases such as obesity, diabetes, and nonalcoholic steatohepatitis (NASH). Specifically, heterocycles derived from BAM15, a potent and mitochondria-selective uncoupler, have yielded promising preclinical candidates that are efficacious in animal models of obesity and NASH. In this study, we report the structure-activity relationship studies of 6-amino-[1,2,5]oxadiazolo[3,4-b]pyridin-5-ol derivatives. Using oxygen consumption rate as a readout of mitochondrial uncoupling, we established 5-hydroxyoxadiazolopyridines as mild uncouplers. In particular, SHM115, which contains a pentafluoro aniline, had an EC50 value of 17 µM and exhibited 75% oral bioavailability. SHM115 treatment increased the energy expenditure and lowered the body fat mass in two diet-induced obesity mouse models, including an obesity prevention model and an obesity reversal model. Taken together, our findings demonstrate the therapeutic potential of mild mitochondrial uncouplers for the prevention of diet-induced obesity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Mitochondria/metabolism , Obesity/drug therapy , Obesity/metabolism , Diet , Oxygen Consumption
17.
Mol Metab ; 69: 101684, 2023 03.
Article in English | MEDLINE | ID: mdl-36731653

ABSTRACT

OBJECTIVE: Calorie restriction is a first-line treatment for overweight individuals with metabolic impairments. However, few patients can adhere to long-term calorie restriction. An alternative approach to calorie restriction that also causes negative energy balance is mitochondrial uncoupling, which decreases the amount of energy that can be extracted from food. Herein we compare the metabolic effects of calorie restriction with the mitochondrial uncoupler BAM15 in the db/db mouse model of severe hyperglycemia, obesity, hypertriglyceridemia, and fatty liver. METHODS: Male db/db mice were treated with ∼50% calorie restriction, BAM15 at two doses of 0.1% and 0.2% (w/w) admixed in diet, or 0.2% BAM15 with time-restricted feeding from 5 weeks of age. Mice were metabolically phenotyped over 4 weeks with assessment of key readouts including body weight, glucose tolerance, and liver steatosis. At termination, liver tissues were analysed by metabolomics and qPCR. RESULTS: Calorie restriction and high-dose 0.2% BAM15 decreased body weight to a similar extent, but mice treated with BAM15 had far better improvement in glucose control. High-dose BAM15 treatment completely normalized fasting glucose and glucose tolerance to levels similar to lean db/+ control mice. Low-dose 0.1% BAM15 did not affect body mass but partially improved glucose tolerance to a similar degree as 50% calorie restriction. Both calorie restriction and high-dose BAM15 significantly improved hyperglucagonemia and liver and serum triglyceride levels. Combining high-dose BAM15 with time-restricted feeding to match the time that calorie restricted mice were fed resulted in the best metabolic phenotype most similar to lean db/+ controls. BAM15-mediated improvements in glucose control were associated with decreased glucagon levels and decreased expression of enzymes involved in hepatic gluconeogenesis. CONCLUSIONS: BAM15 and calorie restriction treatments improved most metabolic disease phenotypes in db/db mice. However, mice fed BAM15 had superior effects on glucose control compared to the calorie restricted group that consumed half as much food. Submaximal dosing with BAM15 demonstrated that its beneficial effects on glucose control are independent of weight loss. These data highlight the potential for mitochondrial uncoupler pharmacotherapies in the treatment of metabolic disease.


Subject(s)
Fatty Liver , Metabolic Diseases , Male , Mice , Animals , Caloric Restriction , Blood Glucose/analysis , Body Weight , Glucose , Mice, Inbred Strains
18.
Chem Commun (Camb) ; 58(99): 13751-13754, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36416159

ABSTRACT

We report a tri-n-butyl phosphine catalyzed regio- and stereo-selective hydroboration of ynamides to yield (Z)-ß-borylenamides in good yields. Surprisingly, a formal cis addition to the triple bond was observed as confirmed by NMR and X-ray crystallography. 31P NMR studies suggest that a zwitterionic vinylphosphonium intermediate is key in the mechanism. The resulting products were further transformed to ß-CF3 enamides via stereoretentive trifluoromethylation.


Subject(s)
Amides , Catalysis , Amides/chemistry , Crystallography, X-Ray
19.
ACS Bio Med Chem Au ; 2(5): 469-489, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36281302

ABSTRACT

Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with five native G-protein coupled receptors (S1P1-5) to regulate cell growth, survival, and proliferation. S1P has been implicated in a variety of pathologies including cancer, kidney fibrosis, and multiple sclerosis. As key mediators in the synthesis of S1P, sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention as viable targets for pharmacologic intervention. In this report, we describe the design, synthesis, and biological evaluation of sphingosine kinase 2 (SphK2) inhibitors with a focus on systematically introducing rigid structures in the aliphatic lipid tail present in existing SphK2 inhibitors. Experimental as well as molecular modeling studies suggest that conformationally restricted "lipophilic tail" analogues bearing a bulky terminal moiety or an internal phenyl ring are useful to complement the "J"-shaped sphingosine binding pocket of SphK2. We identified 14c (SLP9101555) as a potent SphK2 inhibitor (K i = 90 nM) with 200-fold selectivity over SphK1. Molecular docking studies indicated key interactions: the cyclohexyl ring binding in the cleft deep in the pocket, a trifluoromethyl group fitting in a small side cavity, and a hydrogen bond between the guanidino group and Asp308 (amino acid numbering refers to human SphK2 (isoform c) orthologue). In vitro studies using U937 human histiocytic lymphoma cells showed marked decreases in extracellular S1P levels in response to our SphK2 inhibitors. Administration of 14c (dose: 5 mg/kg) to mice resulted in a sustained increase of circulating S1P levels, suggesting target engagement.

20.
Sci Transl Med ; 14(658): eabj2681, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35976996

ABSTRACT

Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.


Subject(s)
Inflammation , Renal Insufficiency, Chronic , Animals , Fibrosis , Humans , Inflammation/metabolism , Kidney/metabolism , Lysophospholipids , Mice , Sphingosine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...