Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38653840

ABSTRACT

While monospecific antibodies have long been the foundational offering of protein therapeutics, recent advancements in antibody engineering have allowed for the development of far more complex antibody structures. Novel molecular format (NMF) proteins, such as bispecific antibodies (BsAbs), are structures capable of multispecific binding, allowing for expanded therapeutic functionality. As demand for NMF proteins continues to rise, biomanufacturers face the challenge of increasing bioreactor process productivity while simultaneously maintaining consistent product quality. This challenge is exacerbated when producing structurally complex proteins with asymmetric modalities, as seen in NMFs. In this study, the impact of a high inoculation density (HID) fed-batch process on the productivity and product quality attributes of two CHO cell lines expressing unique NMFs, a monospecific antibody with an Fc-fusion protein and a bispecific antibody, compared to low inoculation density (LID) platform fed-batch processes was evaluated. It was observed that an intensified platform fed-batch process increased product concentrations by 33 and 109% for the two uniquely structured complex proteins in a shorter culture duration while maintaining similar product quality attributes to traditional fed-batch processes.

2.
Bioprocess Biosyst Eng ; 46(10): 1457-1470, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633861

ABSTRACT

Biologics manufacturing is increasingly moving toward intensified processes that require novel control strategies in order to achieve higher titers in shorter periods of time compared to traditional fed-batch cultures. In order to implement these strategies for intensified processes, continuous process monitoring is often required. To this end, inline Raman spectroscopy was used to develop partial least squares models to monitor changes in residual concentrations of glucose, phenylalanine and methionine during the culture of five different glutamine synthetase piggyBac® Chinese hamster ovary clones cultured using an intensified high inoculation density fed-batch platform process. Continuous monitoring of residual metabolite concentrations facilitated automated feed-rate adjustment of three supplemental feeds to maintain glucose, phenylalanine, and methionine at desired setpoints, while maintaining other nutrient concentrations at acceptable levels across all clones cultured on the high inoculation density platform process. Furthermore, all clones cultured on this process achieved high viable cell concentrations over the course of culture, indicating no detrimental impacts from the proposed feeding strategy. Finally, the automated control strategy sustained cultures inoculated at high cell densities to achieve product concentrations between 5 and 8.3 g/L over the course of 12 days of culture.


Subject(s)
Methionine , Racemethionine , Animals , Cricetinae , CHO Cells , Cricetulus , Glucose , Phenylalanine
3.
Bioprocess Biosyst Eng ; 45(4): 647-657, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34989873

ABSTRACT

Inline refractive index (RI) has the potential for monitoring protein concentration during final bulk concentration. While useful for monitoring and controlling product concentration, RI is sensitive to the respective background buffer being used for processing. This raises concerns around variations in buffer preparations, and during diafiltration where the buffer background is a mixture of different buffers during exchange. This study evaluated whether the use of a RI probe in the permeate line could facilitate continuous background subtraction (dual RI) and improve concentration monitoring during ultrafiltration/diafiltration and single pass TFF concentration for IgG1 and IgG4 antibodies. The proposed dual RI strategy yielded reductions in % error compared to the use of a single refractive index estimate from the retentate line (6.18% vs 8.63% for IgG4 and 2.65% vs 8.85% for IgG1) during traditional ultrafiltration/diafiltration. The improvement in IgG estimates were best during diafiltration where the continuous background subtraction of the permeate RI-enabled continuous monitoring of antibody material without knowledge of what the background buffer was compared to the use of a single RI estimate (6.47% vs 10.79% for IgG4 and 3.29% vs 19.59% for IgG1). In contrast minimal improvement to accuracy was obtained when using SPTFF as a concentration step. The ability to monitor product concentration changes via the proposed dual RI approach removes the need for complex calibrations, minimal worry about changing buffer backgrounds during diafiltration, and could enable better process control during product concentration in the cGMP manufacture of biologics.


Subject(s)
Antibodies, Monoclonal , Refractometry , Ultrafiltration
4.
Bioprocess Biosyst Eng ; 44(1): 127-140, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32816075

ABSTRACT

The use of Raman models for glucose and phenylalanine concentrations to provide the signal for a control algorithm to continuously adjust the feed rate of two separate supplemental feeds during the fed-batch culture of a CHOK1SV GS-KO® cell line in a platform process was evaluated. Automated feed rate adjustment of the glucose feed using a Raman model for glucose concentration, maintained the glucose concentration within the desired target (average deviation ± 0.49 g/L). Automated feed rate adjustment of the nutrient feed using a Raman model for phenylalanine concentration, maintained phenylalanine concentrations within the target (average deviation ± 29.97 mg/L). The novel use of a Raman model for phenylalanine concentration, combined with a Raman model for glucose concentration, to maintain target glucose and phenylalanine concentrations through feed-rate adjustments, reduced the average cumulative glucose and nutrient feed additions (19% and 27% respectively) compared to manually adjusted cultures. Additionally, the proposed automation strategy led to lower osmolality during culture, maintained the nutrient environment more consistently, and achieved higher harvest product concentration (≈ 20% higher) compared to typical fed-batch process control for the cell line and platform process evaluated. Furthermore, the proposed feeding strategy yielded similar glycosylation and charge variant profiles compared to manually adjusted fed-batch process control. The ability to continuously adjust the feed rate addition of two separate feeds in this manner helps enable a shift away from the current daily offline sampling needed to control fed-batch mammalian cell culture during clinical and commercial manufacturing on platform processes.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Culture Media/pharmacology , Glucose/pharmacology , Models, Biological , Phenylalanine/pharmacology , Animals , CHO Cells , Cricetulus , Feedback
5.
Biotechnol Prog ; 34(3): 730-737, 2018 05.
Article in English | MEDLINE | ID: mdl-29603893

ABSTRACT

The monitoring and control of bioprocesses is of the utmost importance in order to provide a consistent, safe, and high-quality product for consumers. Current monitoring and control schemes rely on infrequent and time consuming offline sampling methods, which inherently leads to some variability in the process which may impact the product quality profile. As part of Lonza's dedication to process analytical technology (PAT) initiatives this study evaluated the ability to generate generic calibration models, which are independent of the cell line, using Raman probes to monitor changes in glucose, lactate, glutamate, ammonium, viable cell concentration (VCC), total cell concentration (TCC) and product concentration. Calibration models were developed from cell culture using two different CHOK1SV GS-KOTM cell lines producing different monoclonal antibodies (mAbs). Developed predictive models, measured changes in glucose, lactate, ammonium, VCC, and TCC with average prediction errors of 0.44, 0.23, 0.03 g L-1 , 1.90 × 106 cells mL-1 , and 1.85 × 106 cells mL-1 , respectively over the course of cell culture with minimal cell line dependence. The development of these generic models allows the application of spectroscopic PAT techniques in clinical and commercial manufacturing environments, where processes are typically run once or twice in GMP manufacturing based on a common platform process. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:730-737, 2018.


Subject(s)
Cell Culture Techniques , Models, Statistical , Ammonium Compounds/analysis , Animals , CHO Cells , Calibration , Cells, Cultured , Cricetulus , Glucose/analysis , Glutamic Acid/analysis , Lactic Acid/analysis , Software , Spectrum Analysis, Raman
6.
Analyst ; 140(21): 7195-201, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26396994

ABSTRACT

The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Electrochemistry/instrumentation , Microbial Sensitivity Tests/methods , Pyocyanine/chemistry , Colistin/chemistry , Dimethylpolysiloxanes/chemistry , Electrochemistry/methods , Electrodes , Escherichia coli/drug effects , Microbial Sensitivity Tests/instrumentation , Microscopy, Electron, Scanning , Pseudomonas aeruginosa/drug effects
7.
Analyst ; 139(17): 4241-6, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-24998317

ABSTRACT

This work focuses on developing a faster method for electrochemically detecting a Pseudomonas aeruginosa infection through the addition of amino acids to cell culture samples. We performed square-wave voltammetry measurements of pyocyanin produced by P. aeruginosa using commercially available carbon-based electrodes connected to a Ag/AgCl reference. The electrochemical response resulting from the production of pyocyanin by bacteria was measured in the presence of various amino acids while varying three different culturing parameters: liquid media type (trypticase soy broth vs. M63 minimal media); concentration of amino acids in the solution; and initial concentration of the P. aeruginosa in the solution. Our results demonstrate a faster and stronger electrochemical response in media containing tyrosine and valine at elevated concentrations, lending promise to using amino acids as up-regulatory molecules for faster bacterial detection.


Subject(s)
Amino Acids/metabolism , Culture Media/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Cell Culture Techniques/methods , Electrochemical Techniques/methods , Humans , Pseudomonas Infections/diagnosis , Pyocyanine/analysis
8.
Biosens Bioelectron ; 60: 265-70, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24813917

ABSTRACT

The ability to quickly detect the presence of pathogenic bacteria in patient samples is of the outmost importance to expedient patient care. Here we report the direct, selective, and sensitive detection of the opportunistic pathogen Pseudomonas aeruginosa, spiked in human whole blood with sodium heparin, urine, sputum, and bronchial lavage samples using unmodified, disposable carbon electrode sensors that detect the presence of pyocyanin, a virulence factor that is unique to this species. Square wave voltammetry scans of biological fluids from healthy individuals spiked with P. aeruginosa showed a clear pyocyanin response within one day of culturing at 37°C. Scans of supernatants taken from cultures of P. aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermis, and Bacillus cereus taken over a span of three days in the potential range from -0.5 to 0 V vs. an Ag/AgCl reference showed no electrochemically detectable molecules with the exception of P. aeruginosa. The results indicate the potential to sensitively and selectively determine the presence of P. aeruginosa in human samples via the electrochemical detection of pyocyanin in less than 5 min, without any sample preparation or separation steps.


Subject(s)
Biosensing Techniques/instrumentation , Body Fluids/microbiology , Conductometry/instrumentation , Disposable Equipment , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/metabolism , Pyocyanine/analysis , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
9.
Lab Chip ; 12(24): 5195-201, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23108351

ABSTRACT

Miniaturized and integrated components for electrochemical detection in micro- and nano-fluidic devices are of great interest as they directly yield an electrical signal and promise sensitive, label-free, real-time detection. One of the challenges facing electrochemical sensing is the lack of reliable reference electrode options. This paper describes the fabrication and characterization of a microscale palladium hydride reference electrode in a single microfabrication step. The reference electrode was integrated inside of a nanoscale constriction along with a gold working electrode to create a complete electrochemical sensor. After charging the palladium electrode with hydrogen, the device was used to detect pyocyanin concentrations from 1-100 µM, with a 0.597 micromolar detection limit. This is the first time that a palladium hydride reference electrode has been integrated with a microfabricated electrochemical sensor in a nanofluidic setup. The device was then used over the course of 8 days to measure pyocyanin produced by four different Pseudomonas aeruginosa strains in growth media. By utilizing square wave and differential pulse voltammetry, the redox active molecule, pyocyanin, was selectively detected in a complex solution without the use of any electrode surface modification.

SELECTION OF CITATIONS
SEARCH DETAIL
...