Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 91(12)2015 Dec.
Article in English | MEDLINE | ID: mdl-26572547

ABSTRACT

Closed cryoconite holes (CCHs) are small aquatic ecosystems enclosed in glacier surface ice, and they collectively contribute substantial aquatic habitat to inland Antarctica. We examined the morphology, geochemistry and bacterial diversity of 57 CCHs, spread over seven sites, located on five glaciers, covering a range of latitudes, elevations and distance from open seawater. Isotopes confirmed glacial ice as the initial water source, with water chemistry evolving through freeze concentration and photosynthetic processes to have conductivities ranging from <0.005 to >4 mS cm(-1) and pH from <5 to >11. Nitrate concentrations were more elevated in inland, higher altitude sites. Bacterial communities were characterized by Automated Ribosomal Intergenic Spacer Analysis and high-throughput sequencing. The dominant phyla were Cyanobacteria, Bacteroides, Proteobacteria and Actinobacteria. CCH bacterial communities predominantly grouped by geographic location, suggesting initial wind-borne inocula from local and regional sources play a role in structuring assemblages. However, multivariate multiple regression analysis indicated that internal CCH conditions also influenced community structure, particularly the ion content and pH of the liquid water. This highlights the importance of founder bacterial populations, isolation and water chemistry in the evolution of CCH bacterial communities.


Subject(s)
Bacteria/classification , Ice Cover/microbiology , Seawater/chemistry , Seawater/microbiology , Water Microbiology , Actinobacteria/classification , Actinobacteria/isolation & purification , Antarctic Regions , Bacteria/isolation & purification , Bacteroides/classification , Bacteroides/isolation & purification , Biodiversity , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Ecosystem , Geography , Proteobacteria/classification , Proteobacteria/isolation & purification
2.
Environ Pollut ; 159(1): 116-124, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20965631

ABSTRACT

Elevated levels of copper and zinc in sediment have been shown to adversely affect estuarine infauna. We investigated the additivity of the combined effects of copper and zinc on infaunal recolonisation through a manipulative field experiment in Orewa estuary, New Zealand, using defaunated sediment discs treated with these metals. The nature of their combined effects varied among infaunal taxa and the particular variables being examined. Additive effects were detected for species richness, for the mean log abundances of the polychaetes Prionospio sp. and Scoloplos cylindrifer and for the multivariate response of the community as a whole. Antagonistic effects were detected for the mean log abundances of total infauna and the polychaete Heteromastus sp. Characterising the potentially interactive nature of the combined effects of multiple heavy metals is essential in order to build predictive models of future environmental impacts of metal accumulation in estuarine sediments.


Subject(s)
Copper/toxicity , Zinc/toxicity , Animals , Environmental Monitoring , Geologic Sediments/analysis , Invertebrates/drug effects , Metals, Heavy/toxicity , New Zealand
3.
Environ Toxicol Chem ; 27(10): 2088-96, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18419171

ABSTRACT

Spiking sediments to achieve target concentrations of heavy metal pollutants is a key step in sediment toxicity tests. It is difficult, however, to ensure that metals in an artificially spiked sediment will behave naturally. A method has been developed in the present study to create Cu-, Pb-, and Zn-spiked sediments in which naturally occurring adsorption onto sediment surfaces is the dominant process binding the metals and in which precipitation of readily redissolved minerals and other metal-bearing phases (artifacts of the spiking procedure) are avoided. Uncontaminated bed sediment from an intertidal mudflat in the Orewa estuary, New Zealand, was characterized in terms of existing metal content, optimal adsorption pH, and adsorption capacity. Competitive adsorption between Cu and Pb as well as complexation by seawater anions only slightly affected metal adsorption from seawater. Surface complexation modeling indicated that iron oxide surfaces in the sediment likely were dominating metal adsorption processes. Spiking experiments were designed using these established adsorption characteristics but with significantly higher (>100-fold) concentrations of sediments and dissolved metals and a liquid to solid (L:S) ratio of approximately 5.5. An equilibration time of at least 36 h was required to achieve a reproducible target metal concentration, which could be reliably predicted from the L:S ratio and the initial metal concentration in the spiking solution. Adsorption equilibrium remained the process governing metal binding to the sediment, and no indication was observed that the adsorption capacity of the sediment had been exceeded or that additional metal-bearing phases had been formed.


Subject(s)
Geologic Sediments/analysis , Metals/analysis , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , New Zealand , Oxidation-Reduction , Seawater/analysis , Thermodynamics , Trace Elements
4.
Sci Total Environ ; 343(1-3): 177-97, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15862844

ABSTRACT

Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO(4) concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K(D)=[Me(SPM)]/[Me(DISS)]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban SPM did not appear to affect the partitioning of Zn and Cu; however, Pb in the Kaipara and Waikato Rivers was found to be more associated with the dissolved phase. This is likely to reflect higher particulate Pb inputs to urban systems.


Subject(s)
Drainage, Sanitary/standards , Environmental Monitoring , Water Pollutants, Chemical/analysis , New Zealand , Particle Size , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...