Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cells Tissues Organs ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38934132

ABSTRACT

Localized delivery of angiogenesis-promoting factors such as small molecules, nucleic acids, peptides, and proteins to promote the repair and regeneration of damaged tissues remains a challenge in vascular tissue engineering. Current delivery methods such as direct administration of therapeutics can fail to maintain the necessary sustained release profile and often rely on supraphysiologic doses to achieve the desired therapeutic effect. By implementing a microparticle delivery system, localized delivery can be coupled with sustained controlled release to mitigate the risks involved with the high dosages currently required from direct therapeutic administration. For this purpose, poly(lactic-co-glycolic acid) microparticles were fabricated via antisolvent microencapsulation and the loading, release, and delivery of model angiogenic molecules specifically a small molecule, nucleic acid, and protein, were assessed in vitro using microvascular fragments (MVF). The microencapsulation approach utilized enabled rapid spherical particle formation and encapsulation of model drugs of different sizes, all in one method. The addition of a fibrin scaffold, required for the culture of the MVFs, reduced the initial burst of model drugs, observed in release profiles from PLGA alone. Lastly, in vitro studies using MVFs demonstrated that higher concentrations of microparticles led to greater co-localization of the model therapeutic (miRNA) with MVFs, which is vital for targeted delivery methods. It was also found that the biodistribution of miRNA using the delivered microparticle system was enhanced compared to direct administration. Overall, poly(lactic-co-glycolic acid) microparticles, formulated and loaded with model therapeutic compounds in one step, resulted in improved biodistribution in a model of the vasculature leading to a future in translational revascularization.

3.
Acta Biomater ; 145: 77-87, 2022 06.
Article in English | MEDLINE | ID: mdl-35460910

ABSTRACT

Postmenopausal osteoporosis results from a pro-resorptive bone environment, which decreases bone mineral density causing increased fracture risk. Bone marrow derived mesenchymal stem/stromal cells (MSCs) secrete factors involved in bone homeostasis, but osteoporosis mediated changes to their secretions remain understudied. Herein, we examined the secretome of MSCs isolated from ovariectomized rats (OVX rMSCs), a model of post-menopausal osteoporosis, as a function of cell-cell interactions. Specifically, we controlled clustering of OVX and SHAM rMSCs by assembling them in granular hydrogels synthesized from poly(ethylene glycol) microgels with average diameters of ∼10, 100, and 200 µm. We directed both the sizes of rMSC clusters (single cells to ∼30 cells/cluster) and the percentages of cells within clusters (∼20-90%) by controlling the scaffold pore dimensions. Large clusters of OVX rMSCs had a pro-resorptive secretory profile, with increased concentrations of Activin A, CXCL1, CX3CL1, MCP-1, TIMP-1, and TNF-ɑ, compared to SHAM rMSCs. As this pro-resorptive bias was only observed in large cell clusters, we characterized the expression of several cadherins, mediators of cell-cell contacts. N-cadherin expression was elevated (∼4-fold) in OVX relative to SHAM rMSCs, in both cell clusters and single cells. Finally, TIMP-1 and MCP-1 secretion was only decreased in large cell clusters of OVX rMSCs when N-cadherin interactions were blocked, highlighting the dependence of OVX rMSC secretion of pro-resorptive cytokines on N-cadherin mediated cell-cell contacts. Further elucidation of the N-cadherin mediated osteoporotic MSC secretome may have implications for developing therapies for postmenopausal osteoporosis. STATEMENT OF SIGNIFICANCE: Postmenopausal osteoporosis is a prevalent bone disorder that affects tens of millions of women worldwide. This disease is characterized by severe bone loss resulting from a pro-resorptive bone marrow environment, where the rates of bone resorption outpace the rates of bone deposition. The paracrine factors secreted by bone marrow MSCs can influence cell types responsible for bone homeostasis, but the osteoporosis-mediated changes to MSC secretory properties remains understudied. In this study, we used PEG-based porous granular scaffolds to study the influence of cell clustering on the secretory properties of osteoporotic MSCs. We observed increased secretion of several pro-resorptive factors by osteoporotic MSCs in large clusters. Further, we explored the dependence of this altered secretion profile on N-cadherin mediated cell-cell contacts.


Subject(s)
Cadherins , Hydrogels , Osteoporosis, Postmenopausal , Osteoporosis , Animals , Cadherins/metabolism , Female , Humans , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Osteoporosis/therapy , Osteoporosis, Postmenopausal/complications , Ovariectomy/adverse effects , Polyethylene Glycols/pharmacology , Rats , Rats, Sprague-Dawley , Secretome/drug effects , Secretome/metabolism , Tissue Inhibitor of Metalloproteinase-1
4.
Regen Biomater ; 8(6): rbab060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34925879

ABSTRACT

Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.

5.
Adv Drug Deliv Rev ; 179: 114000, 2021 12.
Article in English | MEDLINE | ID: mdl-34637846

ABSTRACT

mRNA vaccines have received major attention in the fight against COVID-19. Formulations from companies such as Moderna and BioNTech/Pfizer have allowed us to slowly ease the social distancing measures, mask requirements, and lockdowns that have been prevalent since early 2020. This past year's focused work on mRNA vaccines has catapulted this technology to the forefront of public awareness and additional research pursuits, thus leading to new potential for bionanotechnology principles to help drive further innovation using mRNA. In addition to alleviating the burden of COVID-19, mRNA vaccines could potentially provide long-term solutions all over the world for diseases ranging from influenza to AIDS. Herein, we provide a brief commentary based on the history and development of mRNA vaccines in the context of the COVID-19 pandemic. Furthermore, we address current research using the technology and future directions of mRNA vaccine research.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 , Pandemics , Vaccines/immunology , mRNA Vaccines/immunology , Humans
6.
Nano Lett ; 21(20): 8734-8740, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34623161

ABSTRACT

Although dry eye is highly prevalent, many challenges exist in diagnosing the symptom and related diseases. For this reason, anionic hydrogel-coated gold nanoshells (AuNSs) were used in the development of a label-free biosensor for detection of high isoelectric point tear biomarkers associated with dry eye. A custom, aldehyde-functionalized oligo(ethylene glycol)acrylate (Al-OEGA) was included in the hydrogel coating to enhance protein recognition through the formation of dynamic covalent (DC) imine bonds with solvent-accessible lysine residues present on the surface of select tear proteins. Our results demonstrated that hydrogel-coated AuNSs, composed of monomers that form ionic and DC bonds with select tear proteins, greatly enhance protein recognition due to changes in the maximum localized surface plasmon resonance wavelength exhibited by AuNSs in noncompetitive and competitive environments. Validation of the developed biosensor in commercially available pooled human tears revealed the potential for clinical translation to establish a method for dry eye diagnosis.


Subject(s)
Dry Eye Syndromes , Nanoshells , Biomarkers , Gold , Humans , Hydrogels , Static Electricity
7.
Article in English | MEDLINE | ID: mdl-34458653

ABSTRACT

Recent advancements in molecular recognition have provided additional diagnostic and treatment approaches for multiple diseases, including autoimmune disorders and cancers. Research investigating how the composition of biological fluids is altered during disease progression, including differences in the expression of the small molecules, proteins, RNAs, and other components present in patient tears, saliva, blood, urine, or other fluids, has provided a wealth of potential candidates for early disease screening; however, adoption of biomarker screening into clinical settings has been challenged by the need for more robust, low-cost, and high-throughput assays. This review examines current approaches in molecular recognition and biosensing for the quantification of biomarkers for disease screening and diagnostic outcomes.

8.
Article in English | MEDLINE | ID: mdl-34335878

ABSTRACT

The discovery of clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated (Cas) genome editing systems and their applications in human health and medicine has heralded a new era of biotechnology. However, the delivery of CRISPR therapeutics is arguably the most difficult barrier to overcome for translation to in vivo clinical administration. Appropriate delivery methods are required to efficiently and selectively transport all gene editing components to specific target cells and tissues of interest, while minimizing off-target effects. To overcome this challenge, we discuss and critic nanoparticle delivery strategies, focusing on the use of lipid-based and polymeric-based matrices herein.

9.
Adv Healthc Mater ; 10(7): e2001948, 2021 04.
Article in English | MEDLINE | ID: mdl-33594836

ABSTRACT

The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Biocompatible Materials
10.
ACS Biomater Sci Eng ; 7(9): 4282-4292, 2021 09 13.
Article in English | MEDLINE | ID: mdl-33560107

ABSTRACT

Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(N-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.g., adsorption capacity (Q) = 4.7 ± 0.2 mg/mg at 6 mg/mL initial IgG concentration), provide protection from external environmental factors (i.e., temperature), and subsequently release the proteins in an efficient manner (e.g., 100 ± 1% at 2 mg/mL initial IgG concentration). Both cationic and anionic nanogels were synthesized and selectively chosen based on the ability to form electrostatic interactions with adsorbed proteins (e.g., cationic nanogels adsorb low isoelectric point proteins whereas anionic nanogels adsorb high isoelectric point proteins). The nanogel-protein complex formed upon adsorption increases the stabilization of the protein's tertiary structure, providing protection against denaturation at elevated temperatures (e.g., 84 ± 4% of the protected IgG was stabilized when exposed to 65 °C). The addition of a high molar salt solution (e.g., 40 mM CaCl2 solution) to protein-laden nanogels disrupts the electrostatic interactions and collapses the nanogel, ultimately releasing the protein. The versatile materials utilized, in addition to the protein loading and release mechanisms described, provide a simple and efficient strategy to protect fragile biologics for their transport to remote areas without necessitating costly storage equipment.


Subject(s)
Acrylic Resins , Proteins , Humans , Isoelectric Point , Nanogels
11.
Nat Rev Drug Discov ; 20(2): 101-124, 2021 02.
Article in English | MEDLINE | ID: mdl-33277608

ABSTRACT

In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.


Subject(s)
Biomedical Engineering/methods , Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Pharmaceutical Preparations/administration & dosage , Precision Medicine/methods , Biomedical Engineering/trends , Drug Delivery Systems/trends , Humans , Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Precision Medicine/trends
12.
Chem Commun (Camb) ; 56(45): 6141-6144, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32364214

ABSTRACT

An aldehyde acrylate-based functional monomer was incorporated into poly(N-isopropylacrylamide-co-methacrylic acid) nanogels for use as protein receptors. The aldehyde component forms dynamic imines with surface exposed lysine residues, while carboxylic acid/carboxylate moieties form electrostatic interactions with high isoelectric point proteins. Together, these interactions effect protein adsorption and recognition.


Subject(s)
Acrylamides/chemistry , Albumins/chemistry , Immunoglobulin G/chemistry , Lactoferrin/chemistry , Lactoglobulins/chemistry , Muramidase/chemistry , Nanogels/chemistry , Polymethacrylic Acids/chemistry , Adsorption , Isoelectric Point , Static Electricity
13.
Ann Biomed Eng ; 48(7): 1895-1904, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31659603

ABSTRACT

Recent advances in stem cell biology, synthetic biology, bioengineering, and biotechnology have included significant work leading to the development of stem cell-derived organoids. The growing popularity of organoid research and use of organoids is widely due to the fact that these three-dimensional cellular structures better model human physiology compared to traditional in vitro and in vivo methods by recapitulating many biologically relevant parameters. Organoids show great promise for a wide range of applications, such as for use in disease modeling, drug discovery, and regenerative medicine. However, many challenges associated with reproducibility and scale up still remain. Identification of the conditions which generate a robust environment that predictably promotes cellular self-assembly and organization leading to organoid formation is critical and requires a multidisciplinary approach. To accomplish this we need to identify a cellular source, engineer a matrix to stimulate cell-cell and cell-matrix interactions, and provide the biochemical and biophysical cues which mimic that of the in vivo environment. Discussion of the components needed for organoid development and formation is reviewed herein, as well as specific organoid examples and the promise of this research for the future.


Subject(s)
Organoids/cytology , Stem Cells/cytology , Tissue Engineering , Extracellular Matrix , Humans , Stem Cell Niche
14.
Biomed Microdevices ; 21(2): 31, 2019 03 23.
Article in English | MEDLINE | ID: mdl-30904963

ABSTRACT

Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Drug Delivery Systems/methods , Engineering , Hydrogels , Microtechnology/methods , Sequence Analysis/methods , Humans
15.
Ind Eng Chem Res ; 58(33): 15079-15087, 2019.
Article in English | MEDLINE | ID: mdl-32982041

ABSTRACT

Alzheimer's disease is an irreversible neurodegenerative disorder affecting approximately 6 million Americans, 90% of which are over the age of 65. The hallmarks of the disease are represented by amyloid plaques and neurofibrillary tangles. While the neuronal characteristics of Alzheimer's disease are well known, current treatments only provide temporary relief of the disease symptoms. Many of the approved therapeutic agents for the management of cognitive impairments associated with the disease are based on neurotransmitter or enzyme modulation. However, development of new treatment strategies is limited due to failures associated with poor drug solubility, low bioavailability, and the inability to overcome obstacles present along the drug delivery route. In addition, treatment technologies must overcome the challenges presented by the blood-brain barrier. This complex and highly regulated barrier surveys the biochemical, physicochemical, and structural features of nearby molecules at the periphery, only permitting passage of select molecules into the brain. To increase drug efficacy to the brain, many nanotechnology-based platforms have been developed. These methods for assisted drug delivery employ sophisticated design strategies and offer serveral advantages over traditional methods. For example, nanoparticles are generally low-cost technologies, which can be used for non-invasive administrations, and formulations are highly tunable to increase drug loading, targeting, and release efficacy. These nanoscale systems can facilitate passage of drugs through the blood-brain barrier, thus improving the bioavailability, pharmacokinetics, and pharmacodynamics of therapeutic agents. Examples of such nanocarriers which are discussed herein include polymeric nanoparticles, dendrimers, and lipid-based nanoparticles.

16.
ACS Nano ; 12(9): 9342-9354, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30204412

ABSTRACT

The dependence of the localized surface plasmon resonance (LSPR) of noble-metal nanomaterials on refractive index makes LSPR a useful, label-free signal transduction strategy for biosensing. In particular, by decorating gold nanomaterials with molecular recognition agents, analytes of interest can be trapped near the surface, resulting in an increased refractive index surrounding the nanomaterial, and, consequently, a red shift in the LSPR wavelength. Ionic poly( N-isopropylacrylamide- co-methacrylic acid) (PNM) hydrogels were used as protein receptors because PNM nanogels exhibit a large increase in refractive index upon protein binding. Specifically, PNM hydrogels were synthesized on the surface of silica gold nanoshells (AuNSs). This composite material (AuNS@PNM) was used to detect changes in the concentration of two protein biomarkers of chronic dry eye: lysozyme and lactoferrin. Both of these proteins have high isoelectric points, resulting in electrostatic attraction between the negatively charged PNM hydrogels and positively charged proteins. Upon binding lysozyme or lactoferrin, AuNS@PNM exhibits large, concentration-dependent red shifts in LSPR wavelength, which enabled the detection of clinically relevant concentration changes of both biomarkers in human tears. The LSPR-based biosensor described herein has potential utility as an affordable screening tool for chronic dry eye and associated conditions.


Subject(s)
Biosensing Techniques , Gold/chemistry , Hydrogels/chemistry , Nanoshells/chemistry , Surface Plasmon Resonance , Tears/chemistry , Biomarkers/analysis , Humans , Particle Size , Silicon Dioxide/chemistry , Surface Properties
17.
Analyst ; 142(17): 3183-3193, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28745734

ABSTRACT

Due to the high cost and environmental instability of antibodies, there is precedent for developing synthetic molecular recognition agents for use in diagnostic sensors. While these materials typically have lower specificity than antibodies, their cross-reactivity makes them excellent candidates for use in differential sensing routines. In the current work, we design a set of charge-containing poly(N-isopropylacrylamide) (PNIPAM) nanogels for use as differential protein receptors in a turbidimetric sensor array. Specifically, NIPAM was copolymerized with methacrylic acid and modified via carbodiimide coupling to introduce sulfate, guanidinium, secondary amine, or primary amine groups. Modification of the ionizable groups in the network changed the physicochemical and protein binding properties of the nanogels. For high affinity protein-polymer interactions, turbidity of the nanogel solution increased, while for low affinity interactions minimal change in turbidity was observed. Thus, relative turbidity was used as input for multivariate analysis. Turbidimetric assays were performed in two buffers of different pH (i.e., 7.4 and 5.5), but comparable ionic strength, in order to improve differentiation. Using both buffers, it was possible to achieve 100% classification accuracy of eleven model protein biomarkers with as few as two of the nanogel receptors. Additionally, it was possible to detect changes in lysozyme concentration in a simulated tear fluid using the turbidimetric sensor array.


Subject(s)
Acrylic Resins/chemistry , Gels , Nanoparticles , Proteins/analysis , Nephelometry and Turbidimetry , Protein Binding
18.
Regen Eng Transl Med ; 3(3): 166-175, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30906848

ABSTRACT

The emerging field of regenerative engineering offers a great challenge and an even greater opportunity for materials scientists and engineers. How can we develop materials that are highly porous to permit cellular infiltration, yet possess sufficient mechanical integrity to mimic native tissues? How can we retain and deliver bioactive molecules to drive cell organization, proliferation, and differentiation in a predictable manner? In the following perspective, we highlight recent studies that have demonstrated the vital importance of each of these questions, as well as many others pertaining to scaffold development. We posit hybrid materials synthesized by molecular decoration and molecular imprinting as intelligent biomaterials for regenerative engineering applications. These materials have potential to present cell adhesion molecules and soluble growth factors with fine-tuned spatial and temporal control, in response to both cell-driven and external triggers. Future studies in this area will address a pertinent clinical need, expand the existing repertoire of medical materials, and improve the field's understanding of how cells and materials respond to one another.

19.
Tissue Eng Part B Rev ; 23(1): 27-43, 2017 02.
Article in English | MEDLINE | ID: mdl-27484808

ABSTRACT

The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.


Subject(s)
Tissue Engineering , Biocompatible Materials , Hydrogels , Molecular Imprinting , Polymers
20.
Tissue Eng Part C Methods ; 22(2): 155-164, 2016 02.
Article in English | MEDLINE | ID: mdl-26573771

ABSTRACT

Mesenchymal stem cells, precursors that can differentiate into osteoblasts, chondrocytes, and adipocytes, have tremendous potential for derivation of cells with specific (e.g., osteogenic) phenotypes for tissue engineering and tissue regeneration applications. To date, the predominant strategy to achieve directed differentiation of MSCs into osteoblasts was to recapitulate the normal developmental ontogeny of osteoblasts using growth factors (e.g., bone morphogenetic proteins). In contrast, the effects of biophysical stimuli alone on such outcomes remain, at best, partially understood. This in vitro study examined and optimized the effects of alternating electric current alone on the differentiation of adult human mesenchymal stem cells (hMSCs) at the cell population and single-cell levels. hMSCs, cultured on flat, indium-tin-oxide-coated glass in the absence of supplemented exogenous growth factors were exposed to alternating electric current (5-40 µA, 5-10 Hz frequency, sinusoidal waveform), for 1-24 h daily for up to 21 consecutive days. Compared to results obtained from the respective controls, hMSC populations exposed to the alternating electric current alone (in the absence of exogenous growth factors) expressed genes at various stages of differentiation (specifically, TAZ, Runx-2, Osterix, Osteopontin, and Osteocalcin). Optimal osteogenic differentiation was achieved when hMSCs were exposed to a 10 µA, 10 Hz alternating electric current for 6 h daily for up to 21 days. Exclusive osteodifferentiation was observed since genes for the chondrocyte (Collagen Type II) and adipocyte (FABP-4) lineages were not expressed under all conditions of the biophysical stimulus tested. Single cell mRNAs for 45 genes (indicative of hMSC differentiation) were monitored using Fluidigm Systems. Homogeneous expression of the early osteodifferentiation genes (specifically, TAZ and Runx-2) was observed in hMSCs exposed to the alternating electric current at 7 and 21 days. Heterogeneity for all other genes monitored was observed in hMSCs exposed to alternating electric current and in their respective controls. These results provide the first glimpse of gene expression in differentiating hMSCs at the cell population and single-cell levels and represent novel approaches for stem cell differentiation pertinent to new tissue formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...