Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(11): 113602, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363010

ABSTRACT

Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement.

2.
Nature ; 600(7889): 429-433, 2021 12.
Article in English | MEDLINE | ID: mdl-34912091

ABSTRACT

The control of physical systems and their dynamics on the level of individual quanta underpins both fundamental science and quantum technologies. Trapped atomic and molecular systems, neutral1 and charged2, are at the forefront of quantum science. Their extraordinary level of control is evidenced by numerous applications in quantum information processing3,4 and quantum metrology5,6. Studies of the long-range interactions between these systems when combined in a hybrid atom-ion trap7,8 have led to landmark results9-19. However, reaching the ultracold regime-where quantum mechanics dominates the interaction, for example, giving access to controllable scattering resonances20,21-has so far been elusive. Here we demonstrate Feshbach resonances between ions and atoms, using magnetically tunable interactions between 138Ba+ ions and 6Li atoms. We tune the experimental parameters to probe different interaction processes-first, enhancing three-body reactions22,23 and the related losses to identify the resonances and then making two-body interactions dominant to investigate the ion's sympathetic cooling19 in the ultracold atomic bath. Our results provide deeper insights into atom-ion interactions, giving access to complex many-body systems24-27 and applications in experimental quantum simulation28-30.

3.
Appl Phys B ; 126(11): 176, 2020.
Article in English | MEDLINE | ID: mdl-33088025

ABSTRACT

We study a method for mass-selective removal of ions from a Paul trap by parametric excitation. This can be achieved by applying an oscillating electric quadrupole field at twice the secular frequency ω sec using pairs of opposing electrodes. While excitation near the resonance with the secular frequency ω sec only leads to a linear increase of the amplitude with excitation duration, parametric excitation near 2 ω sec results in an exponential increase of the amplitude. This enables efficient removal of ions from the trap with modest excitation voltages and narrow bandwidth, therefore, substantially reducing the disturbance of ions with other charge-to-mass ratios. We numerically study and compare the mass selectivity of the two methods. In addition, we experimentally show that the barium isotopes with 136 and 137 nucleons can be removed from small ion crystals and ejected out of the trap while keeping 138 Ba + ions Doppler cooled, corresponding to a mass selectivity of better than Δ m / m = 1 / 138 . This method can be widely applied to ion trapping experiments without major modifications since it only requires modulating the potential of the ion trap.

4.
Phys Rev Lett ; 116(23): 233003, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341228

ABSTRACT

We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination with a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer-gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer-gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. Final ion temperatures down to the millikelvin regime can be achieved by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling).

SELECTION OF CITATIONS
SEARCH DETAIL
...