Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202409503, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973416

ABSTRACT

The formation of carbon deposits is a major deactivation pathway for solid catalysts. Studying coking on industrially relevant catalysts is, however, often challenging due to the sample heterogeneity. That is especially true for zeolite-containing catalysts where fluorescence often hampers their characterization with Raman spectroscopy. We turned this disadvantage into an advantage and combined Raman and fluorescence (lifetime) microscopy to study the coking behavior of an equilibrium catalyst material used for fluid catalytic cracking of hydrocarbons. The results presented illustrate that this approach can yield new insights in the physicochemical processes occurring within zeolite-containing catalyst particles during their coking process. Ex situ analyses of single catalyst particles revealed considerable intra-sample heterogeneities. The sample-averaged Raman spectra showed a higher degree of graphitization when the sample was exposed to more hexane, while the sample-averaged fluorescence lifetime showed no significant trend. Simultaneous in situ Raman and fluorescence (lifetime) microscopy, used to follow the coking of single particles, gave more insights in the changing fluorescence dynamics. The rise and decline of the average fluorescence lifetime suggested the prolonged presence of smaller coke species that are quenched more and more by adjacent larger polyaromatics acting as Förster-resonance-energy-transfer acceptors.

2.
Chemphyschem ; : e202400154, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38798029

ABSTRACT

Turning waste into valuable products is one of the main challenges of the chemical industry. In this work, chitosan (CS), an abundant, low-cost, and non-toxic biopolymer derived from chitin, was reshaped into beads of ~ 3 mm. Their suitability as a support material for active phase catalyst materials was tested for a zirconium-based Metal-Organic Framework (MOF) with incorporated Pt, namely UiO-67-Pt. Its incorporation was investigated via two procedures: a one-pot synthesis (OPS) and a post-synthetic functionalization (PSF) synthesis method. Scanning electron microscopy (SEM) images show good UiO-67-Pt dispersion throughout the CS beads for the one-pot synthesized material (UiO-67-Pt-OPS@CS). However, this uniform dispersion was not observed for the post-synthetically functionalized material (UiO-67-Pt-PSF@CS). The success of the implementation of UiO-67-Pt was evaluated with ultraviolet-visible and infrared spectroscopy for both composite materials. Thermogravimetric analysis reveals higher thermal stabilities for UiO-67-Pt-OPS@CS composite beads in comparison to pure CS beads, but not for UiO-67-Pt-PSF@CS. The study provides valuable insights into the potential of chitosan as a green, bead-shaped support material for MOFs, offering flexibility in their incorporation through different synthesis routes. It further contributes to the broader goal of the sustainable and eco-friendly design of a new generation of catalysts made from waste materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...