Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 28(8): 1946-1963, 2019 04.
Article in English | MEDLINE | ID: mdl-30714247

ABSTRACT

Selection forces that favour different phenotypes in different environments can change frequencies of genes between populations along environmental clines. Clines are also compatible with balancing forces, such as negative frequency-dependent selection (NFDS), which maintains phenotypic polymorphisms within populations. For example, NFDS is hypothesized to maintain partial migration, a dimorphic behavioural trait prominent in species where only a fraction of the population seasonally migrates. Overall, NFDS is believed to be a common phenomenon in nature, yet a scarcity of studies were published linking naturally occurring allelic variation with bimodal or multimodal phenotypes and balancing selection. We applied a Pool-seq approach and detected selection on alleles associated with environmental variables along a North-South gradient in western North American caribou, a species displaying partially migratory behaviour. On 51 loci, we found a signature of balancing selection, which could be related to NFDS and ultimately the maintenance of the phenotypic polymorphisms known within these populations. Yet, remarkably, we detected directional selection on a locus when our sample was divided into two behaviourally distinctive groups regardless of geographic provenance (a subset of GPS-collared migratory or sedentary individuals), indicating that, within populations, phenotypically homogeneous groups were genetically distinctive. Loci under selection were linked to functional genes involved in oxidative stress response, body development and taste perception. Overall, results indicated genetic differentiation along an environmental gradient of caribou populations, which we found characterized by genes potentially undergoing balancing selection. We suggest that the underlining balancing force, NFDS, plays a strong role within populations harbouring multiple haplotypes and phenotypes, as it is the norm in animals, plants and humans too.


Subject(s)
Behavior, Animal , Genetics, Population , Reindeer/genetics , Selection, Genetic/genetics , Alleles , Animal Migration , Animals , Genetic Drift , Genetic Markers/genetics , Genetic Variation/genetics , Haplotypes/genetics , Humans , Phenotype , Polymorphism, Genetic , Reindeer/physiology , Seasons
2.
Evol Appl ; 10(2): 199-211, 2017 02.
Article in English | MEDLINE | ID: mdl-28127396

ABSTRACT

Ecosystem fragmentation and habitat loss have been the focus of landscape management due to restrictions on contemporary connectivity and dispersal of populations. Here, we used an individual approach to determine the drivers of genetic differentiation in caribou of the Canadian Rockies. We modelled the effects of isolation by distance, landscape resistance and predation risk and evaluated the consequences of individual migratory behaviour (seasonally migratory vs. sedentary) on gene flow in this threatened species. We applied distance-based and reciprocal causal modelling approaches, testing alternative hypotheses on the effects of geographic, topographic, environmental and local population-specific variables on genetic differentiation and relatedness among individuals. Overall, gene flow was restricted to neighbouring local populations, with spatial coordinates, local population size, groups and elevation explaining connectivity among individuals. Landscape resistance, geographic distances and predation risk were correlated with genetic distances, with correlations threefold higher for sedentary than for migratory caribou. As local caribou populations are increasingly isolated, our results indicate the need to address genetic connectivity, especially for populations with individuals displaying different migratory behaviours, whilst maintaining quality habitat both within and across the ranges of threatened populations.

4.
Proc Biol Sci ; 280(1769): 20131756, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24004939

ABSTRACT

Landscape genetics provides a framework for pinpointing environmental features that determine the important exchange of migrants among populations. These studies usually test the significance of environmental variables on gene flow, yet ignore one fundamental driver of genetic variation in small populations, effective population size, N(e). W(e) combined both approaches in evaluating genetic connectivity of a threatened ungulate, woodland caribou. We used least-cost paths to calculate matrices of resistance distance for landscape variables (preferred habitat, anthropogenic features and predation risk) and population-pairwise harmonic means of N(e), and correlated them with genetic distances, FST and D(c). Results showed that spatial configuration of preferred habitat and Ne were the two best predictors of genetic relationships. Additionally, controlling for the effect of Ne increased the strength of correlations of environmental variables with genetic distance, highlighting the significant underlying effect of Ne in modulating genetic drift and perceived spatial connectivity. We therefore have provided empirical support to emphasize preventing increased habitat loss and promoting population growth to ensure metapopulation viability.


Subject(s)
Ecosystem , Endangered Species , Food Chain , Genetic Variation , Reindeer/physiology , Alberta , Animals , British Columbia , Conservation of Natural Resources , Microsatellite Repeats , Models, Biological , Population Density , Reindeer/genetics
5.
Mol Ecol ; 21(14): 3610-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22612518

ABSTRACT

The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species.


Subject(s)
Biological Evolution , Genetics, Population , Phylogeography , Reindeer/genetics , Animals , Bayes Theorem , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Haplotypes , Microsatellite Repeats , North America , Phylogeny , Sequence Analysis, DNA
6.
J Wildl Dis ; 48(2): 361-70, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22493111

ABSTRACT

Chronic wasting disease (CWD) is a fatal, transmissible spongiform encephalopathy that affects free-ranging and captive North American cervids. Although the impacts of CWD on cervid survival have been documented, little is known about the disease impacts on reproduction and recruitment. We used genetic methods and harvest data (2002-04) to reconstruct parentage for a cohort of white-tailed deer (Odocoileus virginianus) fawns born in spring 2002 and evaluate the effects of CWD infection on reproduction and fawn harvest vulnerability. There was no difference between CWD-positive and CWD-negative male deer in the probability of being a parent. However, CWD-positive females were more likely to be parents than CWD-negative females. Because our results are based on harvested animals, we evaluated the hypothesis that higher parentage rates occurred because fawns with CWD-positive mothers were more vulnerable to harvest. Male fawns with CWD-positive mothers were harvested earlier (>1 mo relative to their mother's date of harvest) and farther away from their mothers than male fawns with CWD-negative mothers. Male fawns with CWD-positive mothers were also harvested much earlier and farther away than female fawns from CWD-positive mothers. Most female fawns (86%) with CWD-positive mothers were harvested from the same section as their mothers, while almost half of male and female fawns with CWD-negative mothers were farther away. We conclude that preclinical stages of CWD infection do not prohibit white-tailed deer from successfully reproducing. However, apparently higher harvest vulnerability of male fawns with CWD-positive mothers suggests that CWD infection may make females less capable of providing adequate parental care to ensure the survival and recruitment of their fawns.


Subject(s)
Deer , Reproduction/physiology , Wasting Disease, Chronic/mortality , Animals , Animals, Newborn , Animals, Wild , Female , Male , Population Dynamics , Pregnancy , Survival Analysis , Wasting Disease, Chronic/epidemiology , Wasting Disease, Chronic/transmission , Wisconsin/epidemiology
7.
PLoS One ; 6(5): e19582, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21573241

ABSTRACT

BACKGROUND: Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. METHODOLOGY/PRINCIPAL FINDINGS: By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. CONCLUSIONS/SIGNIFICANCE: We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.


Subject(s)
Biological Evolution , Ecosystem , Seawater , Wolves/genetics , Alaska , Animals , British Columbia , Haplotypes/genetics , Phylogeography , Population Dynamics
8.
Mol Ecol ; 18(4): 665-79, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19175508

ABSTRACT

In North America, caribou (Rangifer tarandus) experienced diversification in separate refugia before the last glacial maximum. Geographical isolation produced the barren-ground caribou (Rangifer tarandus groenlandicus) with its distinctive migratory habits, and the woodland caribou (Rangifer tarandus caribou), which has sedentary behaviour and is now in danger of extinction. Herein we report on the phylogenetics, population structure, and migratory habits of caribou in the Canadian Rockies, utilizing molecular and spatial data for 223 individuals. Mitochondrial DNA analyses show the occurrence of two highly diverged lineages; the Beringian-Eurasian and North American lineages, while microsatellite data reveal that present-day Rockies' caribou populations have resulted from interbreeding between these diverged lineages. An ice-free corridor at the end of the last glaciation likely allowed, for the first time, for barren-ground caribou to migrate from the North and overlap with woodland caribou expanding from the South. The lack of correlation between nuclear and mitochondrial data may indicate that different environmental forces, which might also include human-caused habitat loss and fragmentation, are currently reshaping the population structure of this postglacial hybrid swarm. Furthermore, spatial ecological data show evidence of pronounced migratory behaviour within the study area, and suggest that the probability of being migratory may be higher in individual caribou carrying a Beringian-Eurasian haplotype which is mainly associated with the barren-ground subspecies. Overall, our analyses reveal an intriguing example of postglacial mixing of diverged lineages. In a landscape that is changing due to climatic and human-mediated factors, an understanding of these dynamics, both past and present, is essential for management and conservation of these populations.


Subject(s)
Genetics, Population , Phylogeny , Reindeer/genetics , Animal Migration , Animals , Canada , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Ecosystem , Geography , Haplotypes , Hybridization, Genetic , Microsatellite Repeats , Population Dynamics , Sequence Analysis, DNA
9.
Biol Lett ; 4(1): 130-3, 2008 Feb 23.
Article in English | MEDLINE | ID: mdl-18077240

ABSTRACT

Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities.


Subject(s)
Deer/genetics , Wasting Disease, Chronic/epidemiology , Wasting Disease, Chronic/genetics , Animals , Demography , Prevalence , Wisconsin/epidemiology
10.
Mol Ecol ; 14(4): 917-31, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15773925

ABSTRACT

Relatively little genetic variation has been uncovered in surveys across North American wolf populations. Pacific Northwest coastal wolves, in particular, have never been analysed. With an emphasis on coastal Alaska wolf populations, variation at 11 microsatellite loci was assessed. Coastal wolf populations were distinctive from continental wolves and high levels of diversity were found within this isolated and relatively small geographical region. Significant genetic structure within southeast Alaska relative to other populations in the Pacific Northwest, and lack of significant correlation between genetic and geographical distances suggest that differentiation of southeast Alaska wolves may be caused by barriers to gene flow, rather than isolation by distance. Morphological research also suggests that coastal wolves differ from continental populations. A series of studies of other mammals in the region also has uncovered distinctive evolutionary histories and high levels of endemism along the Pacific coast. Divergence of these coastal wolves is consistent with the unique phylogeographical history of the biota of this region and re-emphasizes the need for continued exploration of this biota to lay a framework for thoughtful management of southeast Alaska.


Subject(s)
Genetic Variation , Wolves/genetics , Alaska , Animals , British Columbia , Gene Frequency , Genotype , Geography , Microsatellite Repeats/genetics , Population Dynamics , Yukon Territory
SELECTION OF CITATIONS
SEARCH DETAIL
...