Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612194

ABSTRACT

Austenitic stainless steels are very popular due to their high strength properties, ductility, excellent corrosion resistance and work hardening. This paper presents the test results for joining AISI 316Ti austenitic steel. The technologies used for joining were the most popular welding techniques such as TIG (welding with a non-consumable electrode in the shield of inert gases), MIG (welding with a consumable electrode in the shield of inert gases) as well as high-energy EBW welding (Electron Beam Welding) and plasma PAW (plasma welding). Microstructural examinations in the face, center and root areas of the weld revealed different contents of delta ferrite with skeletal or lathy ferrite morphology. Additionally, the presence of columnar grains at the fusion line and equiaxed grains in the center of the welds was found. Microstructural, X-ray and ferroscope tests showed the presence of different delta ferrite contents depending on the technology used. The highest content of delta ferrite was found in the TIG and PAW connectors, approximately 5%, and the lowest in the EBW connector, approximately 2%. Based on the tests carried out on the mechanical properties, it was found that the highest properties were achieved by the MIG joint (Rm, 616, Rp0.2 = 335 MPa), while the lowest were achieved by the PAW joint (Rm = 576, Rp0.2 = 315 MPa).

2.
Materials (Basel) ; 16(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895613

ABSTRACT

Civilization and technical progress are not possible without energy. Dynamic economic growth translates into a systematic increase in demand for electricity. Ensuring the continuity and reliability of electricity supplies is one of the most important aspects of energy security in highly developed countries. Growing energy consumption results not only in the need to build new power plants but also in the need to expand and increase transmission capacity. Therefore, large quantities of electric cables are produced all over the world, and after some time, they largely become waste. Recycling of electric cables focuses on the recovery of metals, mainly copper and aluminum, while polymer insulation is often considered waste and ends up in landfills. Currently, more and more stringent regulations are being introduced, mainly environmental ones, which require maximizing the reduction in waste. This article provides a literature review on cable recycling, presenting the advantages and disadvantages of various recycling methods, including mechanical and material recycling. It has been found that currently, there are very large possibilities for recycling cables, and intensive scientific work is being carried out on their development, which is consistent with global climate policy.

3.
Materials (Basel) ; 16(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37895729

ABSTRACT

The paper presents the comparison of two methods of recycling aluminum from HDD platters-the melting method and the method of plastic consolidation. The main elements of HDD memory, i.e., data carriers (platters), were examined via the percentage share of the total HDD mass and also via EDS analysis. The most common are platters made of the aluminum alloy series 5XXX, which are covered with a thin magnetic layer made of nickel. The research involved removing data carriers from about 30 HDDs and fragmenting them. The next step was to divide the platters into three groups; one was melted, the second was subjected to plastic consolidation, and the third group was fragmented into chips and also subjected to the consolidation process. Then, in the process of co-extrusion, rods were extruded from each material, and were subjected to EDS analysis, microstructure testing, Vickers hardness, and uniaxial tensile tests, and then the obtained results were compared. The obtained results of the microstructural tests in the case of gravity cast material confirmed the presence of the Al3Ni globular phase in the matrix. In the case of pressed and extruded materials, the Al3Ni phase appeared at the Ni-AlMg contact. After plastic consolidation, all the tested rods were characterized by their comparable strength properties (a tensile strength of 250 MPa and yield strength of 105 MPa).

4.
Materials (Basel) ; 16(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569925

ABSTRACT

The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively cooled copper cylinder allowed to obtain a metallic material in the form of flakes, which were then consolidated in the process of pressing and direct extrusion. The effect of refinement on structural components after rapid solidification was determined. Rapidly solidified AlSi materials are characterized by a comparable size of Si particles, regardless of the silicon content, and the shape of these particles is close to spheroidal. Not only Si particles are fragmented, but also the Al-Si-Fe phase, which also changed its shape from irregular with sharp edges to regular and spherical. The melt-spinning process resulted in a fine-grained structure compared to materials obtained by gravity-casting and extrusion. The influence of the high-temperature compression test on the mechanical properties of rapidly solidified materials was analyzed, and the results were compared with those of gravity-cast materials. An increase in strength properties was found in the case of the AlSi5 RS alloy by 20%, in the case of AlSi11RS by 25%, and in the case of the alloy containing 20% Si by as much as 86% (tensile test). On the basis of the homogeneity of the particle distribution determined by the SEM method, it was found that rapid solidification is an effective method of increasing the strength properties and improving the plastic properties of Al-Si alloys.

5.
Materials (Basel) ; 16(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37512211

ABSTRACT

The paper presents the results of the joining tests of the EN AW-6082 T6 alloy. The materials were joined using the EBW high-energy (electron beam welding) and friction stir welding (FSW) methods. In the case of FSW welding, the following parameters were used: the linear speed was 355 mm/min, and the rotational speed of the welding tool was 710. In the case of EBW welding, the following parameters were used: accelerating voltage U = 120 kV, beam intensity I = 18.7 mA, welding speed v = 1600 mm/min and, in the case of a smoothing weld, U = 80 kV, beam intensity I = 17 mA, and welding speed v = 700 mm/min. Comprehensive microstructural tests of all welded joints (MO, SEM and TEM) and mechanical property tests (tensile and hardness tests) were carried out. The topographies of the fractures after the tensile test were also examined. Based on the results, it was found that the strength properties of the EBW joint were reduced by 23% and the FSW joint by 38% compared to the base material. A decrease in elongation was also noted, with an FSW elongation of 7.2% and an elongation of 2.7% for EBW. In the case of the EBW joint, magnesium evaporation was found in the weld during welding, while in the FSW joint, the dissolution of the Mg2Si particles responsible for strengthening the material during heat treatment to the T6 state was observed.

6.
Materials (Basel) ; 15(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36556825

ABSTRACT

In this article, the possibility of obtaining a solid plate from waste cable sheaths, by mechanical recycling, i.e., grinding, plasticising and pressing, is discussed-waste cable sheaths being pure PVC with a slight admixture of silicone. Press moulding was carried out under the following conditions: temperature 135 °C, heating duration 1 h and applied pressure 10 MPa. The yield point of the obtained solid plate obtained was 15.0 + -0.6 MPa, flexural strength 0.94 MPa, yield point 0.47 MPa and Charpy's impact strength 5.1 kJ/m2. The resulting solid plate does not differ significantly from the input material, in terms of mechanical strength, so, from the point of view of strength, that is, from a technical point of view, such promising processing of waste cables can be carried out successfully in industrial practice.

7.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683264

ABSTRACT

Recovery of zinc and manganese from scrapped alkaline batteries were carried out in the following way: leaching in H2SO4 and selective precipitation of zinc and manganese by alkalization/neutralization. As a result of non-selective leaching, 95.6-99.7% Zn was leached and 83.7-99.3% Mn was leached. A critical technological parameter is the liquid/solid treatment (l/s) ratio, which should be at least 20 mL∙g-1. Selective leaching, which allows the leaching of zinc only, takes place with a leaching yield of 84.8-98.5% Zn, with minimal manganese co-leaching, 0.7-12.3%. The optimal H2SO4 concentration is 0.25 mol∙L-1. Precipitation of zinc and manganese from the solution after non-selective leaching, with the use of NaOH at pH = 13, and then with H2SO4 to pH = 9, turned out to be ineffective: the manganese concentrate contained 19.9 wt.% Zn and zinc concentrate, and 21.46 wt.% Mn. Better selectivity results were obtained if zinc was precipitated from the solution after selective leaching: at pH = 6.5, 90% of Zn precipitated, and only 2% manganese. Moreover, the obtained concentrate contained over 90% of ZnO. The precipitation of zinc with sodium phosphate and sodium carbonate is non-selective, despite its relatively high efficiency: up to 93.70% of Zn and 4.48-93.18% of Mn and up to 95.22% of Zn and 19.55-99.71% Mn, respectively for Na3PO4 and Na2CO3. Recovered zinc and manganese compounds could have commercial values with suitable refining processes.

8.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329538

ABSTRACT

This article presents the results of research on the recycling of non-ferrous metals from PCB scrap using melting in metallic lead. The idea of this process is to dissolve (transfer) metals from PCB scrap in lead, and then liquation them by cooling the lead-metals alloy. PCB scrap was crushed and then melted into liquid lead. The lead after process was then poured into the casting mold and its chemical composition was examined. Among the various metals in the PCB scrap, copper and tin in particular are dissolved in lead. The more scrap dissolved in lead, the higher the concentration of copper and tin in the alloy. The highest obtained concentration of copper in lead were about 2.2 wt.%, and for tin about 0.8 wt.%.

SELECTION OF CITATIONS
SEARCH DETAIL
...