Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905023

ABSTRACT

The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal. Here, we establish a method for long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore, we achieve single-amino acid level sensitivity, enabling sequencing of combinations of amino acid substitutions across long protein strands. For greater sequencing accuracy, we demonstrate the ability to reread individual protein molecules, spanning hundreds of amino acids in length, multiple times, and explore the potential for high accuracy protein barcode sequencing. Further, we develop a biophysical model that can simulate raw nanopore signals a priori, based on amino acid volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine intact, folded protein domains for complete end-to-end analysis. These results provide proof-of-concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.

2.
J Am Chem Soc ; 142(21): 9587-9593, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32364723

ABSTRACT

Chemical reaction networks (CRNs) provide a powerful abstraction to formally represent complex biochemical processes. DNA provides a promising substrate to implement the abstract representation (or programming language) of CRNs due to its programmable nature. Prior works that used DNA to implement CRNs either used DNA-only systems or multienzyme DNA circuits. Architectures with DNA-only components had the rationale of being biologically simple systems. Multienzyme systems, on the other hand, aimed at using natural enzymes to improve circuit performance, although, at the cost of increased complexity. In this work, we explore an alternative architecture that lies along the spectrum in between DNA-only systems and multienzyme DNA systems. Our architecture relies on only a strand displacing polymerase enzyme and DNA hybridization reactions for implementing CRNs. First, we briefly introduce the theory and DNA design of simple CRNs and then explore the fundamental properties of polymerase-based strand displacement systems. Finally, we engineer a catalytic amplifier in vitro as a use-case of our framework since such amplifiers require the intricate design of DNA sequences and reaction conditions.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/metabolism , Metabolic Networks and Pathways , DNA/chemistry , DNA-Directed DNA Polymerase/chemistry , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...