Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 12: 627819, 2021.
Article in English | MEDLINE | ID: mdl-33776923

ABSTRACT

Gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) is a poorly understood disease with limited treatment options. A better understanding of this disease would greatly benefit from the availability of representative preclinical models. Here, we present the potential of tumor organoids, three-dimensional cultures of tumor cells, to model GEP-NEC. We established three GEP-NEC organoid lines, originating from the stomach and colon, and characterized them using DNA sequencing and immunohistochemistry. Organoids largely resembled the original tumor in expression of synaptophysin, chromogranin and Ki-67. Models derived from tumors containing both neuroendocrine and non-neuroendocrine components were at risk of overgrowth by non-neuroendocrine tumor cells. Organoids were derived from patients treated with cisplatin and everolimus and for the three patients studied, organoid chemosensitivity paralleled clinical response. We demonstrate the feasibility of establishing NEC organoid lines and their potential applications. Organoid culture has the potential to greatly extend the repertoire of preclinical models for GEP-NEC, supporting drug development for this difficult-to-treat tumor type.


Subject(s)
Intestinal Neoplasms/pathology , Models, Biological , Neuroendocrine Tumors/pathology , Organoids/pathology , Pancreatic Neoplasms/pathology , Stomach Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Mismatch Repair/drug effects , Everolimus/pharmacology , Everolimus/therapeutic use , Gene Dosage , Humans , Intestinal Neoplasms/drug therapy , Intestinal Neoplasms/genetics , Ki-67 Antigen/metabolism , Mutation/genetics , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Organoids/drug effects , Organoids/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Exome Sequencing
2.
Sci Transl Med ; 11(513)2019 10 09.
Article in English | MEDLINE | ID: mdl-31597751

ABSTRACT

There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Organoids/cytology , Antineoplastic Agents/therapeutic use , Capecitabine/therapeutic use , Colorectal Neoplasms/drug therapy , Female , Fluorouracil/therapeutic use , Humans , Irinotecan/therapeutic use , Oxaliplatin/therapeutic use , Prospective Studies , Treatment Outcome
3.
EMBO J ; 38(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30643021

ABSTRACT

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cystic Fibrosis/pathology , Epithelial Cells/pathology , Organ Culture Techniques/methods , Organoids/pathology , Respiratory Syncytial Virus Infections/pathology , Respiratory System/pathology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Drug Screening Assays, Antitumor , Epithelial Cells/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory System/metabolism , Xenograft Model Antitumor Assays
4.
Cell ; 174(6): 1586-1598.e12, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100188

ABSTRACT

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.


Subject(s)
Leukocytes, Mononuclear/cytology , T-Lymphocytes/immunology , Aged , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques , Coculture Techniques , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , In Vitro Techniques , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lymphocyte Activation/drug effects , Male , Middle Aged , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Tumor Cells, Cultured
5.
Cell ; 172(1-2): 373-386.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29224780

ABSTRACT

Breast cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, >100 primary and metastatic BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene-expression-based classification groups and allowed in vitro drug screens that were consistent with in vivo xeno-transplantations and patient response. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.


Subject(s)
Breast Neoplasms/pathology , Genetic Heterogeneity , Organoids/pathology , Tissue Banks , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Cells, Cultured , Drug Screening Assays, Antitumor/methods , Female , Humans , Mice , Mice, Nude , Organoids/drug effects , Precision Medicine/methods
6.
Oncotarget ; 8(33): 55582-55592, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28903445

ABSTRACT

BACKGROUND: In this study, our aim was to identify molecular aberrations predictive for response to everolimus, an mTOR inhibitor, regardless of tumor type. METHODS: To generate hypotheses about potential markers for sensitivity to mTOR inhibition, drug sensitivity and genomic profiles of 835 cell lines were analyzed. Subsequently, a multicenter study was conducted. Patients with advanced solid tumors lacking standard of care treatment options were included and underwent a pre-treatment tumor biopsy to enable DNA sequencing of 1,977 genes, derive copy number profiles and determine activation status of pS6 and pERK. Treatment benefit was determined according to TTP ratio and RECIST. We tested for associations between treatment benefit and single molecular aberrations, clusters of aberrations and pathway perturbation. RESULTS: Cell line screens indicated several genes, such as PTEN (P = 0.016; Wald test), to be associated with sensitivity to mTOR inhibition. Subsequently 73 patients were included, of which 59 started treatment with everolimus. Response and molecular data were available from 43 patients. PTEN aberrations, i.e. copy number loss or mutation, were associated with treatment benefit (P = 0.046; Fisher's exact test). CONCLUSION: Loss-of-function aberrations in PTEN potentially represent a tumor type agnostic biomarker for benefit from everolimus and warrants further confirmation in subsequent studies.

7.
Cell Chem Biol ; 24(9): 1092-1100, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28757181

ABSTRACT

Tumor organoids are 3D cultures of cancer cells that can be derived on an individual patient basis with a high success rate. This creates opportunities to build large biobanks with relevant patient material that can be used to perform drug screens and facilitate drug development. The high take rate will also allow side-by-side comparison to evaluate the translational potential of this model system to the patient. These tumors-in-a-dish can be established for a variety of tumor types including colorectal, pancreas, stomach, prostate, and breast cancers. In this review, we highlight what is currently known about tumor organoid culture, the advantages and challenges of the model system, compare it with other pre-clinical cancer models, and evaluate its value for drug development.


Subject(s)
Drug Discovery , Models, Biological , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems , Cell Culture Techniques , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
Oncologist ; 22(1): 33-40, 2017 01.
Article in English | MEDLINE | ID: mdl-27662884

ABSTRACT

BACKGROUND: The discovery of novel biomarkers that predict treatment response in advanced cancer patients requires acquisition of high-quality tumor samples. As cancer evolves over time, tissue is ideally obtained before the start of each treatment. Preferably, samples are freshly frozen to allow analysis by next-generation DNA/RNA sequencing (NGS) but also for making other emerging systematic techniques such as proteomics and metabolomics possible. Here, we describe the first 469 image-guided biopsies collected in a large collaboration in The Netherlands (Center for Personalized Cancer Treatment) and show the utility of these specimens for NGS analysis. PATIENTS AND METHODS: Image-guided tumor biopsies were performed in advanced cancer patients. Samples were fresh frozen, vital tumor cellularity was estimated, and DNA was isolated after macrodissection of tumor-rich areas. Safety of the image-guided biopsy procedures was assessed by reporting of serious adverse events within 14 days after the biopsy procedure. RESULTS: Biopsy procedures were generally well tolerated. Major complications occurred in 2.1%, most frequently consisting of pain. In 7.3% of the percutaneous lung biopsies, pneumothorax requiring drainage occurred. The majority of samples (81%) contained a vital tumor percentage of at least 30%, from which at least 500 ng DNA could be isolated in 91%. Given our preset criteria, 74% of samples were of sufficient quality for biomarker discovery. The NGS results in this cohort were in line with those in other groups. CONCLUSION: Image-guided biopsy procedures for biomarker discovery to enable personalized cancer treatment are safe and feasible and yield a highly valuable biobank. The Oncologist 2017;22:33-40Implications for Practice: This study shows that it is safe to perform image-guided biopsy procedures to obtain fresh frozen tumor samples and that it is feasible to use these biopsies for biomarker discovery purposes in a Dutch multicenter collaboration. From the majority of the samples, sufficient DNA could be yielded to perform next-generation sequencing. These results indicate that the way is paved for consortia to prospectively collect fresh frozen tumor tissue.


Subject(s)
Biological Specimen Banks , Biomarkers, Tumor/genetics , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Adult , Aged , Female , Humans , Image-Guided Biopsy , Male , Middle Aged , Neoplasms/pathology , Netherlands
9.
Cell Rep ; 16(1): 263-277, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27320919

ABSTRACT

The therapeutic landscape of melanoma is improving rapidly. Targeted inhibitors show promising results, but drug resistance often limits durable clinical responses. There is a need for in vivo systems that allow for mechanistic drug resistance studies and (combinatorial) treatment optimization. Therefore, we established a large collection of patient-derived xenografts (PDXs), derived from BRAF(V600E), NRAS(Q61), or BRAF(WT)/NRAS(WT) melanoma metastases prior to treatment with BRAF inhibitor and after resistance had occurred. Taking advantage of PDXs as a limitless source, we screened tumor lysates for resistance mechanisms. We identified a BRAF(V600E) protein harboring a kinase domain duplication (BRAF(V600E/DK)) in ∼10% of the cases, both in PDXs and in an independent patient cohort. While BRAF(V600E/DK) depletion restored sensitivity to BRAF inhibition, a pan-RAF dimerization inhibitor effectively eliminated BRAF(V600E/DK)-expressing cells. These results illustrate the utility of this PDX platform and warrant clinical validation of BRAF dimerization inhibitors for this group of melanoma patients.


Subject(s)
Gene Duplication , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Xenograft Model Antitumor Assays , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Chromosome Aberrations , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic , Humans , Indoles/pharmacology , Indoles/therapeutic use , MAP Kinase Signaling System/drug effects , Melanoma/pathology , Mice , Mutation/genetics , Neoplasm Metastasis , Protein Domains , Protein Multimerization , Reproducibility of Results , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vemurafenib
10.
Proc Natl Acad Sci U S A ; 112(43): 13308-11, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460009

ABSTRACT

Tumor organoids are 3D cultures of cancer cells. They can be derived from the tumor of each individual patient, thereby providing an attractive ex vivo assay to tailor treatment. Using patient-derived tumor organoids for this purpose requires that organoids derived from biopsies maintain the genetic diversity of the in vivo tumor. In this study tumor biopsies were obtained from 14 patients with metastatic colorectal cancer (i) to test the feasibility of organoid culture from metastatic biopsy specimens and (ii) to compare the genetic diversity of patient-derived tumor organoids and the original tumor biopsy. Genetic analysis was performed using SOLiD sequencing for 1,977 cancer-relevant genes. Copy number profiles were generated from sequencing data using CopywriteR. Here we demonstrate that organoid cultures can be established from tumor biopsies of patients with metastatic colorectal cancer with a success rate of 71%. Genetic analysis showed that organoids reflect the metastasis from which they were derived. Ninety percent of somatic mutations were shared between organoids and biopsies from the same patient, and the DNA copy number profiles of organoids and the corresponding original tumor show a correlation of 0.89. Most importantly, none of the mutations that were found exclusively in either the tumor or organoid culture are in driver genes or genes amenable for drug targeting. These findings support further exploration of patient-derived organoids as an ex vivo platform to personalize anticancer treatment.


Subject(s)
Cell Culture Techniques/methods , Colorectal Neoplasms/genetics , Genetic Variation/genetics , Neoplasm Metastasis/genetics , Organoids/cytology , Organoids/growth & development , Antineoplastic Protocols/standards , Base Sequence , Colorectal Neoplasms/drug therapy , Genes, Neoplasm/genetics , Humans , Molecular Sequence Data , Organoids/chemistry , Precision Medicine/methods , Sequence Analysis, DNA
11.
EMBO Mol Med ; 7(9): 1104-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26105199

ABSTRACT

The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAF(V600E) metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole-exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient carrying multiple drug-resistant metastases. Resistance was caused by a plethora of mechanisms, all of which reactivated the MAPK pathway. In addition to three independent amplifications and an aberrant form of BRAF(V600E), we identified a new activating insertion in MEK1. This MEK1(T55delins) (RT) mutation could be traced back to a fraction of the pre-treatment lesion and not only provided protection against vemurafenib but also promoted local invasion of transplanted melanomas. Analysis of patient-derived xenografts (PDX) from therapy-refractory metastases revealed that multiple resistance mechanisms were present within one metastasis. This heterogeneity, both inter- and intra-tumorally, caused an incomplete capture in the PDX of the resistance mechanisms observed in the patient. In conclusion, vemurafenib resistance in a single patient can be established through distinct events, which may be preexisting. Furthermore, our results indicate that PDX may not harbor the full genetic heterogeneity seen in the patient's melanoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Indoles/therapeutic use , Melanoma/drug therapy , Mutation , Neoplasm Metastasis/drug therapy , Skin Neoplasms/drug therapy , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Genetic Variation , Heterografts , Humans , Indoles/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Sequence Analysis, DNA , Skin Neoplasms/complications , Sulfonamides/pharmacology , Vemurafenib
12.
Anticancer Res ; 35(6): 3399-403, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26026101

ABSTRACT

BACKGROUND/AIM: Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal neoplasms. The exact genetic alterations underlying the pathophysiology of PEComas are largely unknown, although it has been shown that activation of the Mammalian target of rapamycin (mTOR) signaling pathway plays a pivotal role. Herein we describe the successful treatment of a patient with metastatic PEComa with the mTOR inhibitor everolimus and a comprehensive analysis to identify mechanisms for response. MATERIALS AND METHODS: Immunohistochemistry, array comparative genomic hybridization (aCGH) and genetic analyses were performed. RESULTS: Immunohistochemistry confirmed constitutive activation of mTOR. aCGH revealed a hyperdiploid karyotype affecting large regions of the genome. Next-generation sequencing did not reveal any tumor-specific mutations in mTOR-related genes. CONCLUSION: Our results show the complexity of determining causal genetic alterations that can predict responsiveness to mTOR inhibition, even for a tumor with a complete remission to this specific treatment.


Subject(s)
Perivascular Epithelioid Cell Neoplasms/genetics , Remission Induction , Sirolimus/analogs & derivatives , TOR Serine-Threonine Kinases/genetics , Biomarkers, Tumor , Comparative Genomic Hybridization , Everolimus , Female , Humans , Immunohistochemistry , Male , Middle Aged , Molecular Targeted Therapy , Perivascular Epithelioid Cell Neoplasms/pathology , Signal Transduction/drug effects , Sirolimus/administration & dosage , TOR Serine-Threonine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...