Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 15: 133-148, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31660416

ABSTRACT

We have demonstrated safe and effective subretinal readministration of recombinant adeno-associated virus serotype (rAAV) to the contralateral eye in large animals and humans even in the setting of preexisting neutralizing antibodies (NAbs). Readministration of AAV to the same retina may be desirable in order to treat additional areas of the retina not targeted initially or to boost transgene expression levels at a later time point. To better understand the immune and structural consequences of subretinal rAAV readministration to the same eye, we administered bilateral subretinal injections of rAAV2-hRPE65v2 to three unaffected non-human primates (NHPs) and repeated the injections in those same eyes 2 months later. Ophthalmic exams and retinal imaging were performed after the first and second injections. Peripheral blood monocytes, serum, and intraocular fluids were collected at baseline and post-injection time points to characterize the cellular and humoral immune responses. Histopathologic and immunohistochemical studies were carried out on the treated retinas. Ipsilateral readministration of AAV2-hRPE65v2 in NHPs did not threaten the ocular or systemic health through the time span of the study. The repeat injections were immunologically and structurally well tolerated, even in the setting of preexisting serum NAbs. Localized structural abnormalities confined to the outer retina and retinal pigmented epithelium (RPE) after readministration of the treatment do not differ from those observed after single or contralateral administration of an AAV carrying a non-therapeutic transgene in NHPs and were not observed in a patient treated with the nearly identical, FDA-approved, AAV2-hRPE65v2 vector (voretigene neparvovec-rzyl), suggesting NHP-specific abnormalities.

2.
Stem Cell Investig ; 4: 65, 2017.
Article in English | MEDLINE | ID: mdl-28815176

ABSTRACT

Induced pluripotent stem cells (iPSCs) are specialized self-renewing cells that are generated by exogenously expressing pluripotency-associated transcription factors in somatic cells such as fibroblasts, peripheral blood mononuclear cells, or lymphoblastoid cell lines (LCLs). iPSCs are functionally similar to naturally pluripotent embryonic stem cells (ESCs) in their capacity to propagate indefinitely and potential to differentiate into all human cell types, and are devoid of the associated ethical complications of origin. iPSCs are useful for studying embryonic development, disease modeling, and drug screening. Additionally, iPSCs provide a personalized approach for pathological studies, particularly for diseases that lack appropriate animal models. Retinal cell differentiations using iPSCs have been successful in this regard. Several protocols to generate various retinal cells have been developed to maximize a specific cell type or, most recently, to mimic in vivo retinal structure and cellular environment. As differentiation protocols continue to improve we are likely to see an increase in our basic understanding of various retinal degenerative diseases and the utilization of iPSCs in clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL