Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687323

ABSTRACT

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.


Subject(s)
Cytomegalovirus , Endoplasmic Reticulum , Viral Envelope Proteins , Viral Proteins , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Endoplasmic Reticulum-Associated Degradation , Host-Pathogen Interactions , Cell Membrane/metabolism , Cell Membrane/virology
2.
Cell Host Microbe ; 32(4): 466-478.e11, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38479395

ABSTRACT

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.


Subject(s)
Cytomegalovirus , Proteomics , Humans , Cytomegalovirus/physiology , Virus Assembly , Virus Replication , Proteins , Autophagy , Lysosomes , Hydrogen-Ion Concentration
3.
Nat Commun ; 14(1): 8134, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065956

ABSTRACT

Modified vaccinia Ankara (MVA) virus does not replicate in human cells and is the vaccine deployed to curb the current outbreak of mpox. Here, we conduct a multiplexed proteomic analysis to quantify >9000 cellular and ~80% of viral proteins throughout MVA infection of human fibroblasts and macrophages. >690 human proteins are down-regulated >2-fold by MVA, revealing a substantial remodelling of the host proteome. >25% of these MVA targets are not shared with replication-competent vaccinia. Viral intermediate/late gene expression is necessary for MVA antagonism of innate immunity, and suppression of interferon effectors such as ISG20 potentiates virus gene expression. Proteomic changes specific to infection of macrophages indicate modulation of the inflammatory response, including inflammasome activation. Our approach thus provides a global view of the impact of MVA on the human proteome and identifies mechanisms that may underpin its abortive infection. These discoveries will prove vital to design future generations of vaccines.


Subject(s)
Vaccinia , Humans , Proteome , Proteomics , Vaccinia virus/genetics , Cell Death , Antiviral Agents
4.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38063292

ABSTRACT

The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells. Pre-treatment of cells with IFNα led to poor expression of HCMV immediate-early proteins from both high and low passage strains, which was associated with the presence of the anti-viral factor SUMO-PML. Inhibition of HCMV replication in the presence of IFNα involving ZAP proteins was HCMV strain-dependent, wherein a high passage HCMV strain was obviously restricted by ZAP and a low passage strain was not. This suggested that strain-specific combinations of anti-viral factors were involved in inhibition of HCMV replication in the presence of IFNα. Overall, this work further supports the development of strategies involving IFNα that may be useful to inhibit HCMV replication and highlights the complexity of the anti-viral response to HCMV in the presence of IFNα.


Subject(s)
Cytomegalovirus , Interferon-alpha , Humans , Cytomegalovirus/physiology , Interferon-alpha/pharmacology , Transcription Factors/metabolism , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/metabolism
5.
Proc Natl Acad Sci U S A ; 120(49): e2309077120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011551

ABSTRACT

Human cytomegalovirus (HCMV) is a paradigm of pathogen immune evasion and sustains lifelong persistent infection in the face of exceptionally powerful host immune responses through the concerted action of multiple immune-evasins. These reduce NK cell activation by inhibiting ligands for activating receptors, expressing ligands for inhibitory receptors, or inhibiting synapse formation. However, these functions only inhibit direct interactions with the infected cell. To determine whether the virus also expresses soluble factors that could modulate NK function at a distance, we systematically screened all 170 HCMV canonical protein-coding genes. This revealed that UL4 encodes a secreted and heavily glycosylated protein (gpUL4) that is expressed with late-phase kinetics and is capable of inhibiting NK cell degranulation. Analyses of gpUL4 binding partners by mass spectrometry identified an interaction with TRAIL. gpUL4 bound TRAIL with picomolar affinity and prevented TRAIL from binding its receptor, thus acting as a TRAIL decoy receptor. TRAIL is found in both soluble and membrane-bound forms, with expression of the membrane-bound form strongly up-regulated on NK cells in response to interferon. gpUL4 inhibited apoptosis induced by soluble TRAIL, while also binding to the NK cell surface in a TRAIL-dependent manner, where it blocked NK cell degranulation and cytokine secretion. gpUL4 therefore acts as an immune-evasin by inhibiting both soluble and membrane-bound TRAIL and is a viral-encoded TRAIL decoy receptor. Interestingly, gpUL4 could also suppress NK responses to heterologous viruses, suggesting that it may act as a systemic virally encoded immunosuppressive agent.


Subject(s)
Cytomegalovirus , Killer Cells, Natural , Humans , Cytomegalovirus/physiology , Immune Evasion , Glycoproteins/metabolism , Apoptosis
6.
Proc Natl Acad Sci U S A ; 120(33): e2303155120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37561786

ABSTRACT

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.


Subject(s)
Cytomegalovirus , Tumor Necrosis Factor-alpha , Humans , Cytomegalovirus/physiology , Tumor Necrosis Factor-alpha/metabolism , Proteome/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Proteomics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cytokines/metabolism , Cell Membrane/metabolism , Metalloproteases/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Membrane Glycoproteins/metabolism , Viral Proteins/metabolism
7.
Cell Rep ; 42(6): 112613, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37302069

ABSTRACT

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , Proteomics , Phenotype
8.
Mol Cell ; 83(13): 2367-2386.e15, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37311461

ABSTRACT

Epstein-Barr virus (EBV) causes infectious mononucleosis, triggers multiple sclerosis, and is associated with 200,000 cancers/year. EBV colonizes the human B cell compartment and periodically reactivates, inducing expression of 80 viral proteins. However, much remains unknown about how EBV remodels host cells and dismantles key antiviral responses. We therefore created a map of EBV-host and EBV-EBV interactions in B cells undergoing EBV replication, uncovering conserved herpesvirus versus EBV-specific host cell targets. The EBV-encoded G-protein-coupled receptor BILF1 associated with MAVS and the UFM1 E3 ligase UFL1. Although UFMylation of 14-3-3 proteins drives RIG-I/MAVS signaling, BILF1-directed MAVS UFMylation instead triggered MAVS packaging into mitochondrial-derived vesicles and lysosomal proteolysis. In the absence of BILF1, EBV replication activated the NLRP3 inflammasome, which impaired viral replication and triggered pyroptosis. Our results provide a viral protein interaction network resource, reveal a UFM1-dependent pathway for selective degradation of mitochondrial cargo, and highlight BILF1 as a novel therapeutic target.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Interaction Maps
9.
J Virol ; 97(3): e0184622, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916924

ABSTRACT

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Subject(s)
Cytomegalovirus , Interferon Type I , Humans , Cytomegalovirus/metabolism , Neurofibromin 2/metabolism , Neurofibromin 2/pharmacology , RNA-Binding Proteins/metabolism , Virus Replication/physiology , Antiviral Agents/pharmacology , Interferon Type I/metabolism , Zinc Fingers
10.
Curr Opin Virol ; 58: 101291, 2023 02.
Article in English | MEDLINE | ID: mdl-36529073

ABSTRACT

The capacity of host cells to detect and restrict an infecting virus rests on an array of cell-autonomous antiviral effectors and innate immune receptors that can trigger inflammatory processes at tissue and organismal levels. Dynamic changes in protein abundance, subcellular localisation, post-translational modifications and interactions with other biomolecules govern these processes. Proteomics is therefore an ideal experimental tool to discover novel mechanisms of host antiviral immunity. Additional information can be gleaned both about host and virus by systematic analysis of viral immune evasion strategies. In this review, we summarise recent advances in proteomic technologies and their application to antiviral innate immunity.


Subject(s)
Antiviral Agents , Viruses , Proteomics , Immunity, Innate , Immune Evasion , Host-Pathogen Interactions
11.
BMJ Open ; 12(11): e063159, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36343994

ABSTRACT

OBJECTIVE: Healthcare workers (HCWs) are at higher risk of SARS-CoV-2 infection than the general population. This group is pivotal to healthcare system resilience during the COVID-19, and future, pandemics. We investigated demographic, social, behavioural and occupational risk factors for SARS-CoV-2 infection among HCWs. DESIGN/SETTING/PARTICIPANTS: HCWs enrolled in a large-scale sero-epidemiological study at a UK university teaching hospital were sent questionnaires spanning a 5-month period from March to July 2020. In a retrospective observational cohort study, univariate logistic regression was used to assess factors associated with SARS-CoV-2 infection. A Least Absolute Shrinkage Selection Operator regression model was used to identify variables to include in a multivariate logistic regression model. RESULTS: Among 2258 HCWs, highest ORs associated with SARS-CoV-2 antibody seropositivity on multivariate analysis were having a household member previously testing positive for SARS-CoV-2 antibodies (OR 6.94 (95% CI 4.15 to 11.6); p<0.0001) and being of black ethnicity (6.21 (95% CI 2.69 to 14.3); p<0.0001). Occupational factors associated with a higher risk of seropositivity included working as a physiotherapist (OR 2.78 (95% CI 1.21 to 6.36); p=0.015) and working predominantly in acute medicine (OR 2.72 (95% CI 1.57 to 4.69); p<0.0001) or medical subspecialties (not including infectious diseases) (OR 2.33 (95% CI 1.4 to 3.88); p=0.001). Reporting that adequate personal protective equipment (PPE) was 'rarely' available had an OR of 2.83 (95% CI 1.29 to 6.25; p=0.01). Reporting attending a handover where social distancing was not possible had an OR of 1.39 (95% CI 1.02 to 1.9; p=0.038). CONCLUSIONS: The emergence of SARS-CoV-2 variants and potential vaccine escape continue to threaten stability of healthcare systems worldwide, and sustained vigilance against HCW infection remains a priority. Enhanced risk assessments should be considered for HCWs of black ethnicity, physiotherapists and those working in acute medicine or medical subspecialties. Workplace risk reduction measures include ongoing access to high-quality PPE and effective social distancing measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Retrospective Studies , Health Personnel , Risk Factors , Antibodies, Viral , United Kingdom/epidemiology , Demography
12.
J Infect ; 85(5): 557-564, 2022 11.
Article in English | MEDLINE | ID: mdl-36058413

ABSTRACT

OBJECTIVES: To describe the risk factors for SARS-CoV-2 infection in UK healthcare workers (HCWs). METHODS: We conducted a prospective sero-epidemiological study of HCWs at a major UK teaching hospital using a SARS-CoV-2 immunoassay. Risk factors for seropositivity were analysed using multivariate logistic regression. RESULTS: 410/5,698 (7·2%) staff tested positive for SARS-CoV-2 antibodies. Seroprevalence was higher in those working in designated COVID-19 areas compared with other areas (9·47% versus 6·16%) Healthcare assistants (aOR 2·06 [95%CI 1·14-3·71]; p=0·016) and domestic and portering staff (aOR 3·45 [95% CI 1·07-11·42]; p=0·039) had significantly higher seroprevalence than other staff groups after adjusting for age, sex, ethnicity and COVID-19 working location. Staff working in acute medicine and medical sub-specialities were also at higher risk (aOR 2·07 [95% CI 1·31-3·25]; p<0·002). Staff from Black, Asian and minority ethnic (BAME) backgrounds had an aOR of 1·65 (95% CI 1·32 - 2·07; p<0·001) compared to white staff; this increased risk was independent of COVID-19 area working. The only symptoms significantly associated with seropositivity in a multivariable model were loss of sense of taste or smell, fever, and myalgia; 31% of staff testing positive reported no prior symptoms. CONCLUSIONS: Risk of SARS-CoV-2 infection amongst HCWs is highly heterogeneous and influenced by COVID-19 working location, role, age and ethnicity. Increased risk amongst BAME staff cannot be accounted for solely by occupational factors.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Health Personnel , Hospitals, Teaching , Humans , Prospective Studies , Risk Factors , Seroepidemiologic Studies , United Kingdom/epidemiology
13.
PLoS Pathog ; 18(6): e1010612, 2022 06.
Article in English | MEDLINE | ID: mdl-35727847

ABSTRACT

The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy.


Subject(s)
Communicable Diseases , Poxviridae , Vaccinia , Humans , Immune Evasion , Membrane Proteins/metabolism , Vaccinia virus
14.
Cell Rep ; 38(10): 110411, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263599

ABSTRACT

Epstein-Barr virus (EBV) persistently infects people worldwide. Delivery of ∼170-kb EBV genomes to nuclei and use of nuclear membrane-less replication compartments (RCs) for their lytic cycle amplification necessitate evasion of intrinsic antiviral responses. Proteomics analysis indicates that, upon B cell infection or lytic reactivation, EBV depletes the cohesin SMC5/6, which has major roles in chromosome maintenance and DNA damage repair. The major tegument protein BNRF1 targets SMC5/6 complexes by a ubiquitin proteasome pathway dependent on calpain proteolysis and Cullin-7. In the absence of BNRF1, SMC5/6 associates with R-loop structures, including at the viral lytic origin of replication, and interferes with RC formation and encapsidation. CRISPR analysis identifies RC restriction roles of SMC5/6 components involved in DNA entrapment and SUMOylation. Our study highlights SMC5/6 as an intrinsic immune sensor and restriction factor for a human herpesvirus RC and has implications for the pathogenesis of EBV-associated cancers.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Envelope Proteins , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes/metabolism , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/physiology , Humans , Viral Envelope Proteins/genetics , Virus Replication/genetics , Cohesins
15.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35105802

ABSTRACT

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immune Evasion , Nuclear Proteins/immunology , Proteolysis , Viral Envelope Proteins/immunology , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Humans , Nuclear Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/immunology , Viral Envelope Proteins/genetics
16.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35106603

ABSTRACT

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
17.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35224470

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

18.
Nat Commun ; 13(1): 751, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136068

ABSTRACT

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Universities , COVID-19/prevention & control , COVID-19/virology , Contact Tracing , Genome, Viral/genetics , Genomics , Humans , Phylogeny , RNA, Viral/genetics , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Students , United Kingdom/epidemiology , Universities/statistics & numerical data
19.
Elife ; 102021 11 16.
Article in English | MEDLINE | ID: mdl-34783656

ABSTRACT

Background: Respiratory protective equipment recommended in the UK for healthcare workers (HCWs) caring for patients with COVID-19 comprises a fluid-resistant surgical mask (FRSM), except in the context of aerosol generating procedures (AGPs). We previously demonstrated frequent pauci- and asymptomatic severe acute respiratory syndrome coronavirus 2 infection HCWs during the first wave of the COVID-19 pandemic in the UK, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Methods: Here, we use observational data and mathematical modelling to analyse infection rates amongst HCWs working on 'red' (coronavirus disease 2019, COVID-19) and 'green' (non-COVID-19) wards during the second wave of the pandemic, before and after the substitution of filtering face piece 3 (FFP3) respirators for FRSMs. Results: Whilst using FRSMs, HCWs working on red wards faced an approximately 31-fold (and at least fivefold) increased risk of direct, ward-based infection. Conversely, after changing to FFP3 respirators, this risk was significantly reduced (52-100% protection). Conclusions: FFP3 respirators may therefore provide more effective protection than FRSMs for HCWs caring for patients with COVID-19, whether or not AGPs are undertaken. Funding: Wellcome Trust, Medical Research Council, Addenbrooke's Charitable Trust, NIHR Cambridge Biomedical Research Centre, NHS Blood and Transfusion, UKRI.


Subject(s)
COVID-19/prevention & control , Health Personnel , Masks , Respiratory Protective Devices , Adult , Aerosols , Aged , COVID-19/epidemiology , Humans , Incidence , Infection Control/methods , Middle Aged , Models, Theoretical , SARS-CoV-2 , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...